
Secure Access Control
Using Mobile Bluetooth Devices

M.Sc. Thesis

Allan Beaufour Larsen
<beaufour@diku.dk>

July 16, 2003
(Revised: September 30, 2003)

Department of Computer Science
University of Copenhagen

Denmark



ii



Abstract

The physical key is an integrated and natural part of most people’s life. It is a
well-tested and well-known technology, but it also has its flaws. In particular,
for companies needing access to many different private buildings, each with
its own lock and key, the distribution of keys to the right employee at the right
time is a complex and costly affair. Furthermore, carrying a large number of
keys is a burden for each employee and increases the chance of keys getting
stolen or lost.

Our goal is to design a solution for secure access control that can replace
physical keys for accessing private buildings. We propose a solution using
digital keys on Bluetooth-enabled mobile phones providing wireless and au-
tomatic unlocking. The design allows easy distribution of keys to users, with
access control enforced by easily deployable autonomous lock devices allow-
ing a non-centralized multi-company approach.

We present a solution for fully automatic discovery and connection estab-
lishment using Bluetooth. Moreover we present a simple and secure authenti-
cation and access control protocol, allowing each mobile phone to unlock mul-
tiple different locks using a single identity certificate and public unencrypted
digital keys. We build a prototype application for a mobile phone, establish a
cost model for the mobile phone and measure the exact energy consumption
and time usage of the application. Finally, we relax the assumptions about us-
ing Bluetooth and a mobile phone, and discuss the requirements for an optimal
mobile device.

iii



iv



Acknowledgements

The work of this thesis was conducted by Allan Beaufour Larsen between Jan-
uary 10th, 2003 and July 16th, 2003.

I would like to thank my adviser, Philippe Bonnet, for guidance, comments,
suggestions and ideas during the project. The angry red and encrypted hand-
writing that populated the drafts of the thesis was also invaluable.

I would also like to thank the people in my office for discussing various
issues with me. Especially Christian Boesgaard for security issues, Martin
Leopold for Bluetooth issues, and Bjarke Buur Mortensen for C++ issues. I
would also like to thank the same three, Ole Nimb, Troels Blum, and Mads Dy-
densborg for their proofreading and comments on the thesis. Thanks also to
Janus Lundager for helping me with measurement issues.

v



vi



Table of Contents

1 Introduction 1
1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Context and Assumptions . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Problem Description and Approach . . . . . . . . . . . . . . . . 5
1.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Making the Connection 9
2.1 Automatic Device Discovery . . . . . . . . . . . . . . . . . . . . 9
2.2 Handling Multiple Devices . . . . . . . . . . . . . . . . . . . . . 10
2.3 Final Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Relay Attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Secure Access Control 23
3.1 Basic Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Security Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Protocol Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Cryptographic Algorithms . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Using Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Device Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Extending the Protocol . . . . . . . . . . . . . . . . . . . . . . . . 46
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Implementing the Prototype 51
4.1 The Mobile Phone . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Resource Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Evaluating the Design 59
5.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 The Mobile Device . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 The Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vii



6 The Optimal Device 83
6.1 Augmenting the Mobile Phone . . . . . . . . . . . . . . . . . . . 84
6.2 Building a Custom Device . . . . . . . . . . . . . . . . . . . . . . 85
6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 Conclusion 89
7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Bibliography 91

Appendices:

A Protocol Description 97

B Developing for the Symbian OS using Linux 101

C Additional Measurements 105

viii



List of Figures

1.1 The context of the project . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Inquiry and connection strategy for the lock device . . . . . . . 18

4.1 Picture of the Sony Ericsson P800 phone. . . . . . . . . . . . . . 52

5.1 Picture of the measuring setup . . . . . . . . . . . . . . . . . . . 60
5.2 Energy usage on boot, in detail . . . . . . . . . . . . . . . . . . . 62
5.3 Energy usage, flight mode . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Energy usage, normal mode . . . . . . . . . . . . . . . . . . . . . 64
5.5 Energy usage, busy loop . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Energy usage, Bluetooth discoverable and connectable . . . . . 67
5.7 Energy usage, Bluetooth discovery . . . . . . . . . . . . . . . . . 69
5.8 Energy usage, receiving Bluetooth connections . . . . . . . . . . 70
5.9 Energy usage, initiating Bluetooth connections . . . . . . . . . . 71
5.10 Energy usage, transferring data with Bluetooth. . . . . . . . . . 73
5.11 Energy usage using RSA, 1024 bit . . . . . . . . . . . . . . . . . . 74
5.12 Energy usage using RSA, 512 bit . . . . . . . . . . . . . . . . . . 76
5.13 Energy usage for the application, multiple connections . . . . . 78
5.14 Energy usage for the application, single connection . . . . . . . 79
5.15 Application average time usage . . . . . . . . . . . . . . . . . . . 80

6.1 Example of a RF tag . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Example of a mobile USB Device . . . . . . . . . . . . . . . . . . 87

C.1 Energy usage on boot, normal mode. . . . . . . . . . . . . . . . . 105
C.2 Energy usage on boot, flight mode. . . . . . . . . . . . . . . . . . 106
C.3 Energy usage, normal phone usage . . . . . . . . . . . . . . . . . 107
C.4 Energy usage, stressing the phone . . . . . . . . . . . . . . . . . 108

ix



x



List of Tables

3.1 List of symbols used in protocol descriptions. . . . . . . . . . . . 38
3.2 NIST recommendations for asymmetric key sizes . . . . . . . . . 40
3.3 Algorithm timings on the RIM pager and the PC . . . . . . . . . 41

xi



xii



CHAPTER 1

Introduction

What is more natural than using a key to unlock a door? It is something that ev-
eryone does almost every day, and it is an integrated part of our daily life. It is
also a very well-known and well-tested technology. Despite these arguments,
keys as we know them might not be the device of choice to open doors in the
future. We have all experienced problems like carrying too many keys while
forgetting the one key we need, or maybe having a lock replaced because we
lost a single key. Interestingly, keys never show up in science fiction movies!

The problems with physical keys has even bigger implications for compa-
nies in the business of mail or goods delivery. These companies need access
to many different private buildings—doors spread over a wide geographical
area and governed by many different owners. Personnel need to carry keys for
each single door on the delivery route. Carrying all these keys (literally kilo-
grams) is a hassle in the daily use and vulnerable to theft. But just as important,
routes, personnel, and locks change over time, making it a resource consuming
operation to assure that all personnel have the right keys at the right time.

To tackle the above issues, we propose to replace physical keys with digital
keys that:

� can easily be distributed to users

� can only be used by the correct user

� can be specialized for each user so each key will be unique

� can be restricted to a given time or date range

� allows many keys to be contained in the same small device

To hold the keys some kind of mobile device is needed: A portable electronic
device that contains the keys and can communicate with a device that can un-
lock a door, a lock device. To be usable, a portable device needs to have a small
form factor and needs to be powered by an integrated power source. These
two factors influence processing power, storage capacity and available energy,

1



2 Introduction

normally making these resources scarce. Door unlocking need not be the only
purpose of the mobile device though. It could be a secondary functionality of
the user’s Personal Server [78].

We envision the following scenario:

The mobile device contains all the keys. When the user approaches
a door, the appropriate key is transfered to the lock automatically
and without physical contact, the lock is unlocked, and the door
can be opened.

The automatic unlocking makes it possible for the user to unlock the door
while carrying goods, making the system very user-friendly.

We propose to use a mobile phone equipped with Bluetooth as the mo-
bile device. First, mobile phones are getting very common and bringing your
mobile phone with you is becoming as natural as bringing your keys. Sec-
ond, mobile phones are becoming increasingly open to third-party developers,
while the hardware at the same time is getting more and more powerful. This
makes mobile phones a suitable platform for uses beyond making and receiv-
ing phone calls. Combined with the ability to perform short-range wireless
communications via Bluetooth, the mobile phone is a good candidate for the
mobile device.

The idea of using a mobile phone as a more general device is not unique—
calendar-functionality, browsers, and games are already incorporated. But mo-
bile phones could evolve to be the generic personal device, or in the words of
Roy Want: “Cell phones will be the Personal Server of the future.” [78]. We
see the use of the mobile phone as an unlocking device as a natural step in this
direction.

The goal of this thesis is to design a system that fulfills the above sce-
nario, with the main focus on the challenges concerning the mobile device and
its interaction with the lock device. Although our starting point is to use a
Bluetooth-enabled mobile phone as a mobile device and solving the needs for
delivery companies, the solution should be as general as possible. The require-
ments for both lock device and mobile device should be as limited as possible.

This work is inspired by a previous collaboration with a company develop-
ing this kind of solution in Denmark1. Some of the assumptions we make in
the thesis are dictated by this company’s requirements. Also, the study of Blue-
tooth is of particular interest in this context. We focus on describing the design
space for all the problems we study in order to facilitate a possible transfer.

1.1 Challenges

There are several challenges to be met in order to execute the above scenario in
practice. The two main challenges are:

1Collaboration under a non-disclosure agreement prevents us from releasing sensitive informa-
tions.



1.2 Context and Assumptions 3

1. Making the system at least as secure as using a physical key.

2. Using Bluetooth as the communication technology.

First, security is naturally of paramount importance in a design aimed at
replacing physical keys. We will introduce different aspects of security, discuss
the necessity of each of these, and will then analyze which security technolo-
gies can be used to secure the system. Interestingly, there is not much directly
related work as the mobile phone hardware seems to fall in between the ex-
tremely constrained hardware of sensor nodes (see [38]) and the fully equipped
PCs.

Second, Bluetooth looks like the natural choice for communication. The
number of mobile phones equipped with Bluetooth is steadily increasing, and
it is becoming the widely accepted standard for short-range point-to-point
communication. But there are important decisions to be made about discovery
and connection strategies that will influence the overall system performance.
There are also general questions of the overall performance of Bluetooth and
the cost overhead of implementing Bluetooth in a device. We study these issues
and how well Bluetooth generally suits this scenario.

In handling these challenges, two aspects have vital influence on any deci-
sion made: Energy conservation and usability. First, energy conservation plays
a major role since we are dealing with a mobile phone that per se is energy con-
strained, as it is battery powered. Thus we have to consider how much energy
each part of the system uses, so as not to drain the battery. It does not matter
how secure the system is, if the mobile phone cannot operate for more than
half an hour. Second, it is important for the system to be at least as easy to use
as a normal key. If not, the system will never gain acceptance. We will have to
take these aspects into consideration throughout the project.

1.2 Context and Assumptions

We have two basic assumptions about the context. The first concerns energy.
We assume that the mobile device is energy constrained and the lock device
is not, which we believe is a reasonable assumption since the mobile device is
powered by an integrated power source. The lock device is mounted next to
a door, most likely in a house where it can be connected to a stable and fixed
power source.

The second assumption concerns the communication. Requiring a network
connection for each lock device makes the system infeasible, especially for
large scale deployment. We therefore assume that the lock device commu-
nicates only with the mobile device (via Bluetooth); it is not connected to a
network of any kind and will have to function autonomously. The mobile de-
vice on the other hand, being a mobile phone, already has the capabilities for
communicating with other systems.

A consequence of this is that each mobile device either has to be authorized
by direct contact with each lock device, or that an external entity that is trusted



4 Introduction

by the lock device can authorize mobile devices on its behalf. We choose the lat-
ter as it corresponds with the way that keys are normally handled, and seems
more viable than the first. There are thus three entities in our scenario:

Lock device A fixed device that is attached to the physical lock unit, and can
unlock it.

Mobile Device A mobile device carried by a person. Can communicate with
the lock device, and may have a user interface.

External Authority A third party that can communicate with the mobile de-
vice, and is trusted by the lock. No direct communication with the lock
device is possible.

The overall scenario is seen in Figure 1.1. One of our goals is to make dis-
tribution of keys easy, but exactly how the mobile device obtains the keys from
the external authority is beyond the scope of this thesis. We assume that the
mobile device has the keys it needs.

Unlocking

Keys

Lock
Device Mobile

Device

External Authority

Figure 1.1: The context of the project.

We also have some general assumptions about the hardware. First of all
we assume that physical size is an issue for both devices. The mobile phone
is carried by a person, and the lock device will have to be mounted near a
door as unobtrusively as possible. The physical size, and the manufacturing
cost will limit the possible hardware in both devices. The mobile device will
furthermore be constrained by being battery powered, which also limits the
hardware. All this leads up to the fact that both lock device and mobile device
have limited hardware, both in terms of processing power and storage capacity.
We do assume though, that the lock device is less constrained than the mobile
device as it is neither mobile nor battery-powered.

Lastly, we also assume that there will be a maximum acceptable waiting
time for the user before the door is unlocked. The exact amount depends on
the individual user, so it is difficult to set a general limit. To have an upper
limit, we believe that most users will find a maximum of five seconds tolerable.



1.3 Problem Description and Approach 5

1.3 Problem Description and Approach

To summarize, our goal is to design a system that allows a Bluetooth-enabled
mobile device to unlock a door without the need for user interaction. The de-
sign needs to fulfill the following criteria:

� Both mobile device and lock device are hardware constrained, and the
system should pose minimal requirements on the hardware.

� Access control is maintained by an external authority that cannot com-
municate with the lock devices.

� The lock device must function autonomously.

� Keys can be customized to individual users.

� Key distribution must be easy.

� The system must be just as easy to use as using physical keys.

Our starting point will be a mobile phone as a mobile device and solving
the needs of mail and goods delivery companies.

To tackle this problem we will design and implement a prototype for a mo-
bile phone and the surrounding infrastructure. We approach the problem in a
bottom-up fashion, and will start by analyzing the discovery of one Bluetooth
device by another, and will then gradually build up a system that meets the
challenges. We will then set up an experimentation setting that lets us measure
the performance of the prototype in terms of time and energy usage. With these
experiences we can further analyze how a generic device can be designed, and
present criteria and requirements for optimal an optimal mobile device.

1.4 Related Work

The different types of access control systems that exist to replace physical keys
do not match the requirements of our scenario. Existing systems either rely on
a wireless transceiver or a card. KEELOQ [49] is a solution based on a wireless
transceiver. A remote keyless entry solution using KEELOQ is presented in [74].
Most cars have the possibility of remote unlocking. Some car manufactures
even allow keyless start and go where the user simply needs to carry the key
device to be able not just to open, but also start the car2. The problem with
these kinds of solutions is that they are designed for a one-to-one situation,
where one transceiver fits exactly one door.

Card-based access control systems are commonly used in large corpora-
tions and use a card equipped either with a magnetic stripe or a microchip.
The latter can either be operated so that the users needs to insert the card into

2F.x. the Nissan Micra (http://www.nissan-micra.com/) or the Mercedes S-class
(http://www.mercedes-benz.com/).

http://www.nissan-micra.com/
http://www.mercedes-benz.com/


6 Introduction

a reader, or contactless where the user just has hold the card near a reader (see
[2] for an overview of the technology). Card-based microchip systems are nor-
mally passive in the sense that the card itself is activated by and receives power
from the reader. It is not capable of functioning autonomously. These systems
are typically meant to be used in the domain of one company, and are normally
designed so that each lock device is connected to a central access control server.

We have only found one product that use Bluetooth-based mobile devices
for access control purposes. XyLoc3 is a commercial key-less authentication
product that enables automatic authorization, designed for Windows-based
PCs and requires connection to a central access control server. Bluetooth is
an optional communication technology that can replace their normal propri-
etary system. We have also found a case study using Bluetooth-enabled mo-
bile phones to control access for gates, which is not specified further4. Unfortu-
nately only marketing information is available.

The different elements of our design naturally build on existing work. Re-
lated work on security and Bluetooth are discussed in the relevant sections.

1.5 Contribution

The primary individual contributions of this project are:

� The design of a fully automated Bluetooth connection establishment strat-
egy, under consideration of speed and energy consumption

� The design of a simple, specialized, and secure authentication protocol
using asymmetric cryptography on constrained devices

� The combination of the above into an application for automatic door un-
locking using existing mobile phones

� The implementation of a prototype application and the measurements of
the exact energy and time usage for it, including energy measurements
for many features on the specific mobile phone chosen for the prototype

In addition we have contributed with patches and bug-fixes to the Affix
Linux Bluetooth stack, the sdk2unix Symbian SDK Linux conversion tool and
the Symbian SDK documentation.

1.6 Thesis Outline

The thesis consists of six chapters. In Chapter 2, we analyze how the mobile
device and lock device automatically discover and connect to each other using
Bluetooth. Once the connection is established we can analyze and design a se-
cure access control system using a Bluetooth connection in Chapter 3. We then

3http://www.ensuretech.com/.
4http://www.codeisland.com/studies/studies.dvd.asp.

http://www.ensuretech.com/
http://www.codeisland.com/studies/studies.dvd.asp


1.6 Thesis Outline 7

describe the prototype hardware and software implementation of the design
in Chapter 4. In Chapter 5 we test and measure the energy and time usage
of both hardware and software, and evaluate the overall design. We then use
the knowledge gathered to analyze the requirements for an optimal device in
Chapter 6. In Chapter 7, we finish the thesis with a conclusion on the results,
the goals reached, and topics for future research.

To fully appreciate this thesis the reader should have a background in com-
puter science and have knowledge of Bluetooth and security.



8 Introduction



CHAPTER 2

Making the Connection

Fortune speed us.
– William Shakespeare, A Winter’s Tale, Act IV

In this chapter we will analyze how a lock device and a mobile device suc-
cessfully establishes a connection via Bluetooth. To fulfill our requirements
this needs to happen without any user interaction, which means that it has to
happen automatically. That is, the connection needs to be established automat-
ically when a user is in front of a door that she wants to open. Bluetooth is pri-
marily designed as a cable replacement technology, not quite for our scenario.
The main challenge is to establish the connection as fast as possible without
any user interaction, while still being energy efficient.

We will start by analyzing the Bluetooth device discovery mechanism and
afterwards the connection establishment. In the last section we will summarize
our choices, and evaluate the suitability of Bluetooth in our scenario.

For an introduction to Bluetooth see [14].

2.1 Automatic Device Discovery

When two devices have to discover each other using Bluetooth, one of the de-
vices transmit search requests, inquiry, while the other device has to be listen-
ing for these requests in the same time period, inquiry scan. The modes are
complementary, so it is not possible for a device to do both at the same time.

The actual discovery mechanism is a complicated procedure because of en-
ergy considerations and the lack of a global synchronized clock. Bluetooth
is designed such that the energy burden is placed on the part doing inquiry.
To save energy, the listening device will only listen for inquiries periodically.
Without a synchronized clock it is not possible for the inquiring device to know

9



10 Making the Connection

exactly when, requiring it to transmit search requests continuously. The spec-
ification recommends performing inquiry for 10.24 seconds to assure that all
devices are found [10, Part B, 10.7.3]. Practical experiments done with two
Bluetooth units show that after 1.910, 4.728, and 5.449 seconds, the discovery
was successful in respectively 50, 95, and 99 percent of all tests, 2.221 seconds
being the average [40]. Similar experiments with different equipment reports
2.772, 4.184, and 6.311 seconds for the same percentages, and an average of 2.33
seconds [43].

These numbers are fairly large compared to the five seconds maximum we
decided in Section 1.2. Making a device switch between doing inquiry and in-
quiry scan does not seem like a feasible scenario. Since the modes are comple-
mentary and there is no synchronized clock, both devices could end up being
in the same mode at overlapping time ranges, where discovery would be im-
possible. Hence, the only way to minimize the discovery time, is to let one of
the devices perform inquiry all the time.

As mentioned, Bluetooth is designed such that inquiry is the expensive op-
eration while inquiry scan is cheap. The reason is that while an inquiring de-
vice broadcasts inquiry packets continuously during the entire inquiry period,
a device doing inquiry scan with default parameters only listens for inquiry
messages for 11.25 ms every 1.28 seconds. Quite a difference in radio usage,
and thus energy usage. Kasten and Langheinrich [40] reports that inquiry is
twice as expensive as inquiry scan, namely 200 mW and 100 mW respectively1.
We have searched for specifications for other Bluetooth modules, but we have
not found any with specifications for inquiry energy cost2.

Even though we do not have good references for the actual power con-
sumption, it is our opinion that it should not be the mobile device doing in-
quiries as it is energy constrained. If the Bluetooth chip used in the mobile
device is properly designed, the power consumption of doing inquiry scans
should be negligible compared to continuous inquiries. Our initial experi-
ments also confirm this (see Section 5.2.2). Based on this, we choose to place
the burden of the inquiries on the lock device.

2.2 Handling Multiple Devices

The Bluetooth devices with the shortest radio range have a range of 10 me-
ters. This means that many Bluetooth devices could be in range of each other,
especially in an office environment where mobile phones, printers, PDAs, etc.
could be Bluetooth enabled. So as a result of an inquiry the lock device could
have a list of devices, which could be mobile devices, irrelevant devices, or any
combination of these. The lock device has to connect to each device to examine
whether it is a mobile device and if it is, whether it wants to, and is allowed
to, unlock the door. Even without any irrelevant devices, two users could ap-

1It is unclear from the article whether the inquiry scan consumption is a continuous consump-
tion or only in the listening periods.

2There are 30 listed modules on http://www.btdesigner.com/and the ones with any spec-
ification of energy consumption only has numbers for idle mode and connections, none has for
inquiry cost.

http://www.btdesigner.com/


2.2 Handling Multiple Devices 11

proach a door at the same time, both carrying a mobile device. Two mobile
devices would then be in range at the same time, and it may be that only one
of them carries a valid key.

Prior work has shown that establishing a connection takes around three sec-
onds [7], and since connection establishment is handled solely by the Bluetooth
hardware, the lock device cannot influence this. So any unnecessary connec-
tions will take a lot of time for the user, and it is thus crucial to limit these.
Another important aspect is that any connection to a Bluetooth device takes
power, and if the device is battery powered the lock device will use valuable
energy on the given device with any unnecessary connection attempts. To sum-
marize, the problem to be solved is:

Minimize the energy consumption and latency for automatic con-
nection establishment between the mobile device and the lock de-
vice, with multiple discoverable devices present.

2.2.1 Discovering and Connecting to Devices

The inquiry command in Bluetooth takes two arguments that determine when
the inquiry is done (see specification in [10]): A timeout on the maximum
amount of time to listen for answers (a modulo of 1.28 seconds) and the max-
imum number of device answers to listen for. But the inquiry can also be
stopped manually at any time. It is not possible to try to establish a connec-
tion while an inquiry is running, so the lock device will have to do inquiry,
stop the inquiry, and then try to connect to the device(s) found.

To get the fastest discovery time, the lock device can wait for the first device
to answer and stop the inquiry immediately and try to connect to it. However
if there are multiple devices in range the lock device will only see the first one
answering, which may not be the right device to connect to. The lock device
will then have to do inquiry again, and if it follows the same strategy the same
device may be the first to answer again. Waiting a specific amount of time
after the first device has answered is also a possibility, but the first device that
answers can be the correct device and it may have been in range for a long
time (up till 10.24 seconds according to the standard), so waiting could make
an already long wait even longer.

Instead we propose for the lock device to keep a history of previously dis-
covered devices, and use this to differentiate between the devices discovered
during inquiry. The lock device can record whether a device has been discov-
ered multiple times but has failed to respond properly to a connection request.
The device is probably not a mobile device then, and the lock device will wait
for further answers before finishing the inquiry. This will filter out any Blue-
tooth devices that either are irrelevant (f.x. a nearby printer) or are mobile
devices not used with this lock device. A device will have to have more than
one non-successful response before it should be tagged as an irrelevant device,
as connection attempts may fail from time to time. The lock device also has to
clear the history for a device periodically, as a device that may not have been



12 Making the Connection

used with a lock device might obtain the necessary keys or software. Waiting
more than a day before being able to use newly obtained keys would be an an-
noyance to the user, while waiting less before clearing the history will lead to
too many failed connection attempts. The lock device can then clear the history
once a day, at a time where the lock device is not used frequently.

Multiple Devices

If two new devices enter the range of the lock at the same time, and only one
of them wants to open the door, there is still a problem with the above strat-
egy. The lock device stops inquiring after it has found the first device, tries to
connect to it, which could either succeed or fail. If it fails this could either be
because of a general Bluetooth connection failure, or that it is the second de-
vice that wants to unlock the door. The problem is that the lock device does
not know that there is a second device, and in the case of a connection failure it
cannot rule out that it is the first device that wants to open the door. Restarting
the inquiry procedure might return the first device or the second device, either
of them could be the wrong one, so inquiry might have to be done multiple
times before the right device is found. This strategy is nondeterministic and
might take a long time.

If the lock device, when it starts inquiring again after an unsuccessful con-
nection attempt, inquiries until all mobile devices are found before starting to
connect, the discovery procedure will have an upper limit. We do not have fig-
ures for inquiry time with multiple devices in range, but Bluetooth has various
mechanisms to avoid collisions for inquiry answers. As an example, a Blue-
tooth device receiving an inquiry has to wait a random amount of time before
answering it. Thus, for a limited amount of devices in range, the figures for
discovering one device should apply for multiple devices too. This means that
if the lock device inquiries for 6.4 seconds ( �

�������	��

) there is 99% chance of

a device being found. Waiting the 10.24 seconds that the standard specifies is
much too long, and with a 99% chance of finding all within 6.4 seconds the
possible failure in one out of 100 cases of this special scenario is acceptable.
Even in case of a failure, the lock device will eventually discover the device in
a subsequent inquiry. All in all, we believe that although any second attempt
takes time, it is better to set an upper limit on the discovery time. We there-
fore choose to let the lock device inquiry for 6.4 seconds after an unsuccessful
connection.

If there are multiple devices found during the inquiry, the lock device has
to choose which one to connect to first, since it is only possible to establish a
connection to one device at a time in Bluetooth. The lock device will have to
choose a device from the list of devices and try to connect to it. If the connec-
tion fails, it removes the device from the list and choose another one, and so on
until the lock is unlocked or the list is empty. If there exist no prior knowledge
about the devices, nothing else can be done but changing the order in which
devices are chosen from the list. Since the inquiry procedure involves multiple
random elements the order of the list will be nondeterministic, and only practi-
cal experiments can show whether for example random choosing is better than
just taking the head of the list.



2.2 Handling Multiple Devices 13

Over time the lock device can also use the history to choose which device
to connect to first. If the lock device has the choice of connecting to a mobile
device that has previously unlocked it, or another device that it has not seen
before or has previous connection failures, it is clear that it should connect to
the first device first. This use of the history is only used to prioritize devices
not to disregard them totally, so for this purpose the history can be retained
longer.

2.2.2 Limiting the Number of Devices in Range

To limit the number of possible devices to connect to we can also choose to
limit the number of devices in range of the lock device, which can be obtained
by adjusting the Bluetooth radio on the lock device. First, the range of the ra-
dio can be limited, since the user carrying the correct mobile device should be
located close to the lock device. This can easily be done as it is just a question of
decreasing the power to the radio or alternatively, if this is not possible, shield-
ing the radio which would weaken the signal and thus decrease the range. The
natural downside to this is that the shorter the range, the closer the user has
to be before the mobile device can be discovered, increasing the time she will
have to wait in front of the door. The optimal range will have to be found
through experiments in an actual installation.

Second, the radio can be directional. If the lock device is located on a door
that can be opened without a key from one side, there is no reason to try to
connect to mobile devices located on that side of the door. Most doors in office
environments and apartment blocks are like this. If the lock device is located
right next to the door, our estimate is that it should be something like 160–
180 degrees. But again the actual setting of the radius will have to be tested
through experiments, and will depend on the placement of the lock device, the
door, etc.

It is also possible to use features in Bluetooth to filter out irrelevant devices
(i.e. Bluetooth devices that do not function as a mobile device in our context).
One method is to set the Inquiry Access Code (IAC) used in the inquiry. The
Bluetooth device listening for inquiry requests must also have the same IAC
set, or else it will not answer. All mobile devices could then have a special IAC
that they listen for. The problem is that the standard only defines two different
IACs the General IAC (GIAC) and the Limited IAC (LIAC). The GIAC is the one
normally used, while LIAC is used when a device wants to use limited discover-
able mode. It is explicitly stated that this mode “is only intended to be used for
limited time periods in scenarios where both sides have been explicitly caused
to enter this state, usually by user action.” [69, Section 1] and that a device
“should not be in limited discoverable mode for more than ��������� �	��
� ” [11,
Section 4.1.2.1] ( ��������� �	��
�� is 1 minute). Thus the mobile device cannot use the
LIAC and still conform to the standard. Moreover it is likely that a Bluetooth
device only supports one IAC at a time, which makes the mobile device indis-
coverable for other uses, which could be unacceptable to the user. All in all, it
is not possible to use this feature.

Another method is to use the data returned in an inquiry response. Be-



14 Making the Connection

sides information needed to connect to the device, there is also a Class Of De-
vice/Service field (CoD) (use defined in [11] , content in [69]). The CoD is user
configurable and is, as the name suggests, split into a Bluetooth Device Class and
a Bluetooth Service Type part. If every mobile device has some common data in
the CoD, the lock device can filter out any device without this data.

The class part defines the primary functionality of the device: a computer,
a phone, a peripheral, etc. Although it is possible to configure the class part,
it will influence all other contexts where the device is being discovered, which
may not be satisfactory to the user. Secondly, there is no definition for access
control purposes and if there was, it would not exactly be true to say that access
control was the primary function of a mobile phone.

The service part of the CoD is a 11-bit field specifying which services are
available on the device, with one bit for each of the service types: positioning,
networking, rendering, capturing, object transfer, audio, telephony, informa-
tion, limited discovery, and two reserved bits. None of the first eight bits fits
directly to access control—although we do transfer an object (the key), it is
probably to stress the concept. Of the three remaining bits, two of the bits are
reserved so they cannot be used and the third can only be used in limited dis-
coverable mode. So adhering strictly to the standard, it will not be possible to
use the service class either.

The service class may still be used though, by a creative reading of the stan-
dard. It is only stated that the limited discoverable mode bit has to be set when
the device is in limited discoverable mode, not that it cannot be set when the
device is not in this mode. To our knowledge the LIAC is infrequently used,
so the chance of other devices having this bit set is small. So all mobile devices
could have this bit set, letting the lock device filter out any irrelevant devices in
an effective and easy way. It is on border of being a hack, but it is our opinion
that it obeys the standard. We choose to use this feature as it is an effective
filter, and will save many unnecessary connections and thus valuable time.

Lastly, a method for avoiding a lot of unnecessary connections, is to make
the lock device able to detect whether the door is locked or not—logically no
connections should be done if the door is unlocked.

2.2.3 Context Awareness

Until now we have concentrated on how the lock device discovers and con-
nects to the right mobile device, but the problem can also be tackled from the
viewpoint of the mobile device: If the mobile device does not do inquiry scans
the lock device will not detect it, which apart from making the connection es-
tablishment easier also saves valuable energy on the mobile device. In fact the
mobile device does not have to be discoverable all the time, it only needs to
be discoverable when it needs to unlock a door. The problem is that without
user interaction, the device automatically has to detect when a door needs to
be unlocked—it needs to be aware of its own context.

Context awareness is used for numerous mobile device projects like ParcTAB
[77], Cyberguide [45], Smart-Its [63], TEA [26], and numerous others. Schmidt



2.2 Handling Multiple Devices 15

et al. [65] organize context into either human factors which relates to the users
current tasks, environment, known habits, etc., or physical environment which
relates to the current location, the resources at the location and the physical
conditions (light, motion, etc.). It is beyond the scope of this project to do a full
analysis of context awareness, but we will elaborate on two examples of the use
of the physical environment in our scenario: location, and physical conditions.
For an elaborate analysis of context in ubiquitous computing see [64].

Using Location

Knowing the current location will enable the mobile device to only be discov-
erable when it is near a known location of a lock device. How the mobile
device knows the locations is a topic in itself, but a key could have door loca-
tion information attached or the mobile device could learn the locations as it
communicates with the lock devices.

The system that delivers the location information can either be a propri-
etary or an existing system. A proprietary system will need to be installed
at all locations where lock devices are present, which will add extra cost and
complications to each lock device installation. Moreover it also needs to be
installed on the mobile phone. All in all we are not in favor of a proprietary
solution.

Of globally available systems, there seems only to be two choices: GPS [33]
or GSM [32]. GPS would give the mobile device absolute coordinates, but is
still rather expensive and is not found in mobile phones today. Furthermore it
does not work well indoors. GSM is the European digital mobile phone stan-
dard, which is used allover Europe3 and is gaining market in the US. Each base
station antenna in a GSM network has a unique cell ID, which can be retrieved
by the mobile phone. By keeping a list of known cell IDs for given locations,
these cell IDs can be used to deduce the location. Single base station anten-
nas cover a big area though, especially in rural districts (multiple kilometers),
and cell usage can depend on weather conditions, operator restructuring, etc.
The result is large granularity and uncertainty so GSM cannot be used to dis-
tinguish between locks in an office environment. It may not even be used to
distinguish between apartment blocks. However in many cases it can enable
the mobile phone to detect whether the user is at home, at work, etc.

The location information offered by GSM can be augmented through ser-
vices offered by the GSM operators. As an example, Ericsson has a service
which provides a position with typically 200 to 300 meters accuracy in an ur-
ban environment, without the need for special hardware on the mobile device
(see [16]). This increases accuracy, and thus the usefulness, of the system, but
the general availability of these services are not known to us.

3There are still some analog systems like NMT in use, but it is being phased out. Moreover
devices for analog systems tend not to have Bluetooth installed.



16 Making the Connection

Using Physical Conditions

Another approach is to use physical conditions (following the terms from [65])
to obtain information about the context, by using sensors to obtain information
about the physical environment and measure light, pressure, acceleration, tem-
perature, audio, etc. A mobile phone in our scenario is pr. default equipped
with three inputs that could be classified as a sort of sensors: the microphone,
the GSM radio, and the Bluetooth radio. It is not immediately apparent what
these could be used for in our context (except for the location information from
GSM as explained previously). It is possible though that they can be used in
conjunction with other sensor data to strengthen or weaken a given context
recognition (i.e., sensor fusion).

An interesting sensor in our scenario would be an acceleration sensor: As
long as a mobile device is stationary, and has been for a while, it would mean
that the device is not carried around, and thus there is little chance that the user
needs to open a door. Such a sensor has successfully been used in the TEA,
Mediacup, and Smart-ITs projects (all described in [26]), among others in an
experiment to make a mobile phone automatically change profiles depending
on the context. The mobile phone was able to recognize the context with a
certainty of more than 87%. Their only problem was that it could take up to
30 seconds before the context was detected and switched to. Still it shows that
physical conditions can be detected in practice using simple sensors.

2.3 Final Design

Our choice for the design is that the lock device will do endless inquiries, and
a mobile device must do inquiry scans and have the Limited Discoverable Mode
bit set in the CoD. Ideally only valid mobile devices should be returned from
the inquiry, since all irrelevant devices should have been filtered out, either by
the history or by the CoD.

The procedure will find the mobile device within 2.3 seconds on average
(based on previous experiments), or if the first connect fails, in average time
plus 6.4 seconds in 99% of the cases. The same applies if multiple devices are
present and the mobile device is not the first to answer. In the latter case it will
also take time to connect to any other device found during the inquiry, if more
than two new devices has entered the range at the same time.

The discovery time directly affects the waiting time in front of the door,
but it also depends on the radio range of the lock device as discovery starts as
soon as the mobile device is in range. It is reasonable to assume that a normal
walking pace is 5 km/h, or 1.4 m/s, so for each meter of added radio range, 0.7
seconds can be subtracted from the waiting time. Even with a short range of
only 4 meters, the device will be discovered before the user reaches the door. In
the special inquiry case, the average discovery time will be 8.7 seconds ( � � 
��� � �

), so the range will have to be 12.5 meters for the same to happen. Besides
the trouble of many other Bluetooth devices also being in range, we will later
in this section discuss why this might not be feasible.



2.3 Final Design 17

There are still some challenges in the use of the system, primarily related to
the automatic unlocking of the door. First and extremely important, the system
must not unlock a door without the user being aware of it. There must be some
kind of feedback when the door is unlocked, preferably on both lock device and
mobile device. On the mobile device, it can either be an audio signal or use of
the vibrator function if the mobile device has one. The lock device can also use
an audio signal, but the unlocking mechanism of the physical lock may have
feedback mechanisms already, as it is common in many intercoms in apartment
blocks. Still, the user can be unaware of the unlocking and unintentionally
leave a door unlocked. For the system to be secure, the door should only be
unlocked for a brief period of time, still leaving enough time for the user to
open the door. A couple of seconds should be enough or until the door is
opened if the lock device is able to detect this.

Another problem is how to avoid unwanted unlocking of the door, as the
system will automatically unlock the door if the mobile device is allowed and
is discoverable. There are three scenarios where a mobile device is in range,
but where the user does not want to open the door:

1. The user is incidentally located near the door.

2. The user is leaving.

3. The user is passing by the door.

First, the user may incidentally be standing next to the door talking to some-
one else, which the lock device cannot detect. If the user has to open the door
anyway the door can just be opened. If not, the user can either move out of
range, or have some easy method to choose not to open the door on the mobile
device, either permanently or for a limited period.

Second, a user does not want to unlock the door when she is leaving the
area. A solution is not to try to unlock the door shortly after it has been closed.
First, this assumes that the lock device can detect this, and secondly the user
may want to unlock the door again immediately after locking it, because she
might have forgotten something. Waiting a few seconds for this to happen will
be tolerable though, so we propose that the lock device waits 5 seconds after
the door is closed before performing inquiries again. This will allow the user
to get out of range before the lock device tries to unlock the door again.

Third, the user may just be passing by the door. This could be solved by
requiring the mobile device to be near the door and remaining immobile for
a short time before opening the door. This could be done by a sensor on
the mobile phone, or radio range measurements by the lock device. Unfor-
tunately Bluetooth does not have explicit support for this, but it is possible for
a Bluetooth module to support it and return an indication of the range. Either
through the Get Link Quality command [10, p. 715] which is module ven-
dor specific or through a vendor-specific command. We have not found any
devices supporting this. So in our scenario this can only be solved by limiting
the radio range of the lock device, minimizing the time a mobile device pass-
ing by is in range and thus the chance of successful discovery and connection



18 Making the Connection

setup. In Figure 2.1, we present the complete diagram for the state machine of
the lock device including all above mentioned features.

Start Inquiry

Doing Inquiry

Cancel Inquiry 1

Pause 5 s.

Door opened

Device
Valid

Cancel Inquiry 2

Yes

Device found

Pop Device

No

Connecting

Success

CFAIL == 1?

Inquiry
for 6.4 s

Sort devices CFAIL = 0 

CFAIL = 1

Fail

Run Application

Fail
Success

Success

No more devices

Yes

No
Door is open

Door closed

Unlock Door

Timeout Door opened

Lock Door

Figure 2.1: The inquiry and connection strategy for the lock device. The device
performs constant inquiries until a valid device is found, and then tries to con-
nect to it. If any connection or unlocking attempts fails it enters the special case
where it does inquiry for 6.4 seconds to discover all devices (shown in inverse
coloring on the graph). When the door is opened the device aborts inquiry, and
restarts operation after a 5 second pause when the door is closed again.

The conclusion is that the radio range should be as short as possible. Pre-
suming that the mobile device is the first to be connected to, the unlocking
application 1.0 second, average connection time is 3.0 seconds, and average
discovery time is 2.33 seconds unlocking totals 6.33 seconds. To achieve an av-
erage wait time in front of the door of 5 seconds, the mobile device will have
to be in range 1.33 seconds before the user reaches the door, which gives a
minimum radio range of approximately 2 meters. Observe though that this
is only average timings, guaranteeing a maximum wait time is not possible.
Moreover, if the first attempt fails the average waiting time will be longer.



2.4 Relay Attack 19

An average person walking past the lock device will pass that area in around
3 seconds, which in most cases will not be enough time to unlock the door. But
with a slow moving person or fast discovery and connection establishment,
unneeded unlocking will occur. We cannot influence the Bluetooth part, but
tightening the unlocking application part to 0.5 seconds will decrease the min-
imum radio range to a bit more than 1 meter. The unlocking application should
at a maximum take one second then, preferably less. We will analyze the re-
quirements for this in the next chapter.

2.4 Relay Attack

There is one security vulnerability in this scenario that allows someone to
mount an attack on the system, a relay attack. The attack allows attackers to
unlock the door with a mobile device of a user, when the user is far from the
door itself. The user will preferably be notified of the unlocking (see previous
section), but being possibly far away from the door this poses a risk.

Mounting the attack will require two attackers working together, one fol-
lowing the mobile device ( ��������� ), and one at the lock device ( 	
������� ). The
attackers can then either amplify the signals from the device radios or relay the
communication through another communication channel with longer range.
The easiest way to mount the attack is through the use of two Bluetooth de-
vices, where it is possible to set the Bluetooth address. � ������� will set its Blue-
tooth address to the address of the lock device, and 	 ������� will set its Blue-
tooth address to the address of the mobile device. 	 ������� will be discovered
by the lock device, which will then connect to it. � ������� will connect to the mo-
bile device, acting as the lock device. When both connections are established
	 ������� and � ������� will relay all traffic over another communication channel, for
example a GSM data link. There is no detectable difference in the Bluetooth
communication for the real devices, and as the attack requires no knowledge
or alteration of the contents of the communication it can be mounted against
any application.

The problem is that the lock and mobile device use an untrusted commu-
nication channel (the atmosphere) and has no idea about the physical distance
between them. This can be solved by disallowing door unlocking to happen if
devices are located far from each other, that is, more than a couple of meters.
This needs either absolute or relative positioning. If both devices have access
to absolute positioning and transfers their position to the other part securely,
they can abort the communication if the distance is to big. The lock device can
have its position saved once, but the mobile device needs to obtain its position
continuously and with an accuracy far exceeding that of GSM, so that is not
possible.

Relative positioning, by measuring the time it takes for the radio signal
to travel from sender to receiver, cannot solve the problem, even if the Blue-
tooth devices supported this. One attacker will be located right next to the
lock device, and if the other attacker is located at roughly the same distance
to the mobile device, the distance to the communication partner observed by



20 Making the Connection

the two devices will be correct. So the distance has to be assured via the ap-
plication. The problem is, that the application on the lock device will have to
be able to measure the round-trip time difference between a packet sent over 1
meter, and one sent over minimum 10 meters. That is the difference between���
��� ���
	����� � �

�
� � � ������� and

����
��� ����	������ � �

�
� � �	�������

, a difference between 10 and
100 nanoseconds! First the lock device would need a timer capable of mea-
suring this and secondly it would need complete knowledge of timings in the
Bluetooth stack in both itself and the mobile device. Theoretically this might be
possible for the lock device, but the mobile device could be any type of hard-
ware where this information will be impossible to obtain. Thus this is not an
option either.

However, with some user interaction we can limit the attack. We propose
that the user needs to actively turn on the unlocking function of the mobile
device, but that it automatically turns off again after a user defined period.
The period could either be the time since unlocking was enabled, or the time
since the last unlocking. This will not guard against the relay attack, but only
make the device susceptible to the attack when it is being used—not when the
user is sleeping, on a break, etc. It does however need user interaction, so the
choice of using this must be left to the specific user.

All in all, we unfortunately have no solution on how to guard the system
against this type of attack in our context. This can only be solved by measuring
the distance which we cannot, or by the user acknowledging the unlocking
which is not what we intended.

2.5 Conclusion

In this chapter we have presented a method enabling automatic connection
establishment between a lock device and a mobile device using Bluetooth. We
have tackled the challenges in doing this without user interaction, and in an
energy efficient way.

The procedure will achieve an unlocking of the door in less than five sec-
onds on average. In cases where multiple mobile devices enter the range at the
same time, and the one who answers first either does not have the right key or
connection setup fails, the wait will be at least twelve seconds. The reason for
this is the combination of Bluetooth and the required automatic unlocking.

Is Bluetooth then suitable for this scenario? It is not a perfect match, but it
works. The main problem with Bluetooth is the slow discovery and connection
establishment. There is not much room for error when the average time for
doing both is more than five seconds, and we for other reasons have to limit the
radio range to two meters. An improvement of these critical steps in Bluetooth
would be of great help.

A feature that could be of great value for us, that Bluetooth unfortunately
does not have, is a limited discoverable mode based on the Bluetooth address of
the inquiring device. If a mobile device would know the Bluetooth addresses
of all the lock devices it has the possibility of unlocking, it could limit inquiry



2.5 Conclusion 21

answers to those devices (if the user allows it) and save unnecessary connection
attempts.

Many of the challenges we have faced in this section originates in the need
for automatic unlocking. While this is a valuable feature and makes the sce-
nario easy to use, it might pose too big a problem when based on Bluetooth.
Especially the relay attack is troublesome, but:

In many cases, middleperson attacks are possible but not eco-
nomic. In the case of car keys, it should certainly be possible to
steal a car by having an accomplice follow the driver, and electron-
ically relay the radio challenge to you as you work the lock. But
it would be a lot simpler to just pick the driver’s pocket and mug
him. ([4], page 20.)

So whether this attack is a real problem in a practical scenario is an open
question. But as long as the user is notified about every unlocking, both suc-
cessful and unsuccessful, the user will be aware of the attack and will be able
to take action.

In the following chapters we will analyze how to build a secure but fast
protocol supporting our scenario. The protocol procedure must take less than
one second, but preferably be as fast as possible to minimize waiting time or
radio range. Further, we will measure the speed of doing inquiry and connec-
tion establishment to verify the average speed with our specific equipment. We
will also measure the energy cost of doing inquiry versus inquiry scan, to test
our assumption of the former being expensive as opposed to the latter.



22 Making the Connection



CHAPTER 3

Secure Access Control

Complex systems are less secure than simple ones, guaranteed.
– Bruce Schneier, Secrets & Lies [67]

In the previous chapter we analyzed how the mobile device and the lock
device automatically discovers each other and establishes a Bluetooth connec-
tion. In this section we will analyze how to design a secure access control
system that fulfills the project’s requirements on top of this connection. The
overall design is based on the ideas in previous work (see [12]).

We will start by presenting the basic design of our protocol and discuss
the specific security requirements for the protocol. We will then analyze and
design a protocol that incorporates these requirements. Afterwards we will
discuss which cryptographic algorithm is best suited for the system and ana-
lyze the use of the security features in Bluetooth. After that we will present the
exact requirements for both devices, and finally consider two extensions to the
basic scenario (presented in Chapter 1).

Throughout the analysis we will try to adhere to all the advises given in [1,
67], but will pay special attention to two of them: First, using well-known and
well-tested security mechanisms whenever possible. Opposed to building our
own, this enables us to build on the existing expertise and knowledge invested
in these by the security community. Second, keeping the system as simple as
possible. Adhering to this will make the system not just easier to implement
but also hopefully easier to secure, as discussed in [67].

23



24 Secure Access Control

The main problem in this chapter is to:

Design a secure protocol that allows a mobile device with a valid key
to unlock a door. Keys are created by an external authority that can-
not communicate with the lock device that handles the unlocking of
the door. The protocol must fulfill the requirements given in Section
1.3.

An important requirement is that the protocol must work on resource con-
strained devices (limited CPU, memory, and energy). This means that the sy-
stem should only incorporate the absolutely required features. This also aids
in keeping the system simple, and thus hopefully more secure. Another goal is
to make the protocol independent of the underlying communication system. If
Bluetooth should fail to fulfill the requirements or another technology is found
more suitable or gains wider acceptance, the protocol needs be easy to transfer
to a different communication medium. So even though we have chosen to use
Bluetooth, the protocol should not depend on it.

3.1 Basic Design

We will start by defining what a key is. A key is normally an object that in itself
allows the holder to unlock one or more locks. We will redefine this slightly in
our system, and propose two distinct characteristics for a key in our design,
an access key: an access key is not secret and is bound to an identity (what an
identity is will be analyzed later). This means that an access key will still allow
the unlocking of one or more locks, but it cannot be used alone. To unlock a
door, the mobile device needs both a valid access key for the specific lock and
the matching identity. This eases the problem of creating and distributing keys,
because access keys can be transfered unencrypted by untrusted channels and
can only be used by the mobile device that is authenticated as the right identity
(i.e. authentication, which will be discussed later). Moreover this also makes
the information required to prove the identity the only secret information in
the system, and thus the only information that needs to be guarded with care.

The following structure constitutes the baseline for our system, and this is
the structure that we will analyze in depth in the following sections to make it
secure.

1. The lock device connects and presents itself to the mobile device.

2. The mobile device sends an access key and proof of identity to the lock
device.

3. The lock device unlocks the door if the information is valid, and informs
the mobile device of the result.

The first step is needed for the mobile device to know which access key to use,
and in the second step it transfers the necessary information. The third step
provides feedback and logging possibilities for the mobile device. Each of the



3.2 Security Needs 25

steps will be mapped into a concrete packet type in the protocol: LockGreet,
MobileCred, and Message accordingly. The structure and contents of these
will be analyzed in the later sections. However, if a mobile device is contacted
by a lock device when it is not interested in unlocking the door or does not
have a valid access key, it must also be possible to abort the protocol after step
1. We might need to add extra steps or packet types to make this possible, but
our goal is to keep as close to the above described structure as possible to keep
the system simple.

3.1.1 Existing Protocols

Building secure authentication on top of a loss-less data connection is a prob-
lem that has been solved before. The three commonly used protocols are TLS
[17], IPSec [75], and SSH [6]—all three offer the same functionality, but are
used in different contexts. However they are all general protocols allowing
secure and authenticated communication of any kind to take place, offering a
multitude of different systems for authentication and encryption. Many fea-
tures that are not necessary in this simple scenario, which takes up space and
makes them complex to implement. As an example the establishment of a TLS
connection requires a minimum of eight packets. Moreover the transfer of the
access key information needs to take place on top of these protocols, as none
of them support access control, only authentication. Systems like Akenti [52]
that also use asymmetric cryptography for access control purposes also builds
on top of an existing secure transfer layer.

Commonly used systems are made for more general purposes, and are not
designed for the constrained hardware. By designing our own protocol it will
exactly match the requirements. This however introduces the risk of security
vulnerabilities. Keeping that in mind, we still believe that a simple custom
protocol that allows simple implementations of both lock device and mobile
device is best suited to this system. The simplicity will also help reduce the
possible security risks in a custom protocol.

3.2 Security Needs

In this section we will analyze what sort of security is needed in the system.
We choose to divide security into the following classes:

Confidentiality: Ensuring that data can only be read by the intended recipient.

Integrity: Ensuring that data is not inserted, modified, duplicated, reordered,
or replayed.

Availability: Ensuring that a service is available when needed.

Authentication: Establishing the identity of the communicating parties.

Non-repudiation: Ensuring that it is not possible for a party to send or receive
data, and deny it later.



26 Secure Access Control

Other classes can be defined and used, but these are the most important
and are commonly agreed to be part of the term security1.

Every added security measure will increase the complexity of the system
and most probably increase the resource usage. This directly contradicts the
goals of the design, so we need to analyze exactly which security classes are
needed in the protocol and only include these. This is one of the overall chal-
lenges in this chapter.

In the rest of this section we will analyze exactly what security classes are
needed and whether to use asymmetric or symmetric cryptography.

3.2.1 Authentication and Integrity

Of the five classes of security described above, two classes are an absolute re-
quirement for the mobile device. The lock device will need to assure that the
identity stated in the access key information is identical to the mobile device
identity. In other words it will need to authenticate the mobile device. This is
the main problem that needs to be solved by the protocol.

To be able to trust the information received by the mobile device, the lock
device will also need to make sure it is not altered in the transfer from the
mobile device. It has to assure that the packet integrity is secured. This will
also be required to assure that an attacker cannot reuse previous authentica-
tion information in a replay attack. Hence data from the mobile device needs
authentication and integrity.

Lock Device

Whether the lock device needs to be authenticated, allowing the mobile de-
vice to be sure of the identity of the lock device, is not clear. The first problem
is to establish the identity of the lock in our scenario. When there is no user
interaction, the mobile device does not know the correct identity of the lock
device that it needs to open. Even with user interaction, the user would have
to confirm that the lock device connecting to the mobile device, is the lock de-
vice attached to the door she wants to open. To do this she must be presented
with information that allows her to verify that, for example a number or com-
mon name for the door. This has to be verified at each unlocking which will
be tedious, and most probably be ignored by many users. Hence the mobile
device can authenticate the lock device, but it cannot use this to confirm that
the lock device is the one on the door that the user is near. A relay attack can
still be mounted (see Section 2.4). Authentication can still be used to differ be-
tween lock devices with a valid identity, and fake lock devices. The question is
whether there are any reasons to pose as a fake lock device.

A fake lock device could keep connecting to the mobile device to try to
drain the battery, exploit errors in the software to crash the application, keep
it from connecting to a real lock device, etc.—just to be a nuisance or to make

1For a further discussion of this and a general introduction to security and security issues please
see [4, 72].



3.2 Security Needs 27

a Denial of Service (DoS) attack. But except for errors in the software, all this
can be done without any knowledge about the protocol, as any Bluetooth com-
munication takes energy as the radio has to be turned on and packets received.
Furthermore, making a DoS attack is quite easy in the wireless world as an
attacker can always jam the spectrum with a radio transmitter.

Another reason to pose as a fake lock device could be to obtain access keys
and identity information from the mobile device. But access keys are not secret
and we see no reason for the identity information to contain secrets either. Even
with authentication, the same attack would still be possible by listening to the
communication with a valid lock device, as long as the communication is not
encrypted.

An active version of the relay attack can also be done where the fake lock
device can parse and alter the packets as it sends them between the two real
devices (both types of attacks are called a man-in-the-middle (MITM) attack).
This will not pose a greater security problem than the relay attack, changing the
packets will only make the unlocking fail because of the integrity check.

Integrity for the messages from the lock device cannot be guaranteed with-
out authenticating the lock device, so if integrity is needed this could be the
reason to require authentication. We see no reason to assure the integrity of
the LockGreet packet. If something is wrong with the packet, the door will
not be unlocked posing no security risks. Integrity is needed to be able to fully
trust the contents of the Message packet though. Whether a door is unlocked
or not does not depend on this packet as it is only an informational message.
As we see unlocking as the main problem of the function, we believe that the
complexity needed to guarantee both authentication and integrity for the lock
device is too much for an informational message.

We do not have any absolute reasons for authenticating the lock device or
securing integrity for the messages. Furthermore, the mentioned attacks are
all limited by the radio range of the mobile device, so an attacker needs to be
near the target. We believe that the gain of authentication or integrity will be
relatively small compared to the extra computation and complexity it involves.
A consequence is that the user should be notified of all connection attempts,
not just successful ones, so the user is made aware of possible attacks and can
act accordingly.

3.2.2 Confidentiality

There is no need for confidentiality to guarantee the other security classes, it
will only be needed if the system needs to transfer information that is deemed
sensitive by either party. The only interesting information transfered is the
identity of the mobile device, and possibly the identity of the user carrying
it, which might be considered private information. If that is the case, there is
all the more reason to require confidentiality since our scenario uses wireless
communication, where eavesdropping is easier than in a wired communica-
tion scenario. However confidentiality implies encryption, which will increase
hardware demands or needed time and system complexity (see [1]). Second,
the Bluetooth address will always be public so it will also be possible to de-



28 Secure Access Control

duce the user from this. Third, confidentiality is implemented by encrypting
the communication between the mobile device and the lock device. To encrypt
the communication to the lock device the mobile device needs to establish a
shared secret with the lock device. But to guard against MITM attacks the lock
device needs to be authenticated, which we have found not to be feasible. So it
is not possible to guarantee confidentiality.

3.2.3 Non-repudiation

Whether non-repudiation is needed to obtain a secure access control, is a matter
of definition and context. As for confidentiality it is not needed by the other
security classes. Non-repudiation can be used by the lock device, or rather the
owner of the lock device, to prove that an identity has been used to open the
lock at a given time. So from the viewpoint of the lock device, non-repudiation
is a positive thing. This is not necessarily true for the mobile device, as non-
repudiation can be used, legally or not, to prove the whereabouts of the mobile
device. So it seems that non-repudiation is a question of either security or
privacy depending on the viewpoint, and should be an optional feature.

3.2.4 Availability

The question of availability cannot directly be divided into an absolute or op-
tional need. If the system is not available, it does not matter how secure it is.
However, availability issues, most prominently DoS attacks, are often handled
by authentication of both parties in a communication which will possibly in-
crease hardware demands and complexity to much for our scenario. Moreover
a DoS attack is always possible in a radio communication system, by simply
jamming the used radio spectrum. Furthermore as long as the system is us-
ing Bluetooth, it is always possible to do endless connection establishment at-
tempts, thus blocking the device discovery and connection for other devices.
We will consider the availability issues throughout the design, but keep in
mind that our application builds on top of systems where DoS attacks are easy.

3.2.5 Symmetric or Asymmetric Cryptography

When it comes to implementing the security classes, a fundamental choice
will have to be made: Whether to use symmetric or asymmetric cryptogra-
phy. Briefly, in symmetric cryptography there is only one key that is used for
both encryption and decryption. In asymmetric cryptography two keys are
used, a public key and a private key, constituting a key pair—it is not possible (in
reasonable time) to calculate one key from the other. Data encrypted with the
private key can be decrypted with the public key, and vice versa. Normally,
the private key is, as the name suggests, kept private while the public key can
be freely distributed. For a further introduction and discussion of symmetric
and asymmetric cryptography see [48, 66, 72].

Symmetric algorithms has some features which makes them very practi-
cal for our scenario. In comparison with asymmetric algorithms they can use



3.3 Protocol Design 29

relatively small key sizes, are very fast, and can be implemented in very little
space both in terms of code and storage space. So based on the constrained
hardware in our system, symmetric algorithms seems to be the logical choice.
Several systems offering both integrity and authentication has been designed
using symmetric communication. A good example is SNEP [58], that provides
these two classes for sensor nodes with very limited hardware.

As we see it, there are two major problems with using symmetric key cryp-
tography in our scenario. First, the mobile device needs to establish a shared
secret with every party that it needs to communicate with. So in order for the
lock device to authenticate the mobile device, it must have exactly the same in-
formation available as the mobile device. In other words, when the lock device
can authenticate an identity it can also use it, that is, identify itself to other lock
devices with this identity. This means that the user of a mobile device will need
to fully trust lock devices not to misuse the mobile device identity. Otherwise
the mobile device needs to have a unique identity for each lock device. The
latter seems to destroy the purpose of having an identity, as the external au-
thority will need to certify each separate identity and the amount of data that
needs to be kept secret increases significantly. Using asymmetric cryptography
the system can still be kept very simple, while placing no trust requirements in
the lock device.

Second, to verify access keys the lock device also has the information needed
to create these. A attacker getting access to read the information stored on a
lock device (a passive attacker), can create valid access keys for the lock. This
makes it possible to get access to a door, without changing anything on the
lock device. With asymmetric cryptography the lock only needs to be able to
verify access keys, not to create them.

These arguments are strong enough for us to choose to base our system on
asymmetric cryptography, even though it may be challenging to implement
on the constrained hardware the system is assumed to run on. Another con-
sequence is that the security features built into the Bluetooth protocol itself
cannot be used, as it only supports symmetric cryptography (see [10, Part B,
section 14]). But we believe that this decision ultimately will make the system
easier to use and more secure.

3.2.6 Summary

All in all, the system will need to implement authentication and integrity for
the mobile device. Optionally non-repudiation should also be supported but
only if it can be incorporated with no or limited increase in hardware demands
and complexity. Moreover the system needs to use asymmetric cryptography.

3.3 Protocol Design

In this section we will analyze and design the protocol for the system. That
is, fully develop the structure given in Section 3.1, using asymmetric crypto-
graphy and provide authentication and integrity for the MobileCred packet.



30 Secure Access Control

To accomplish this while still making the system small, simple, and fast is the
challenge in this section. We will start by analyzing how the mobile device is
authenticated, then the structure of the access key, and lastly the communica-
tion with the lock device.

3.3.1 The Mobile Device Identity

The lock device needs to establish the identity of the mobile device, and check
whether it is allowed to open the door. The lock device may never have com-
municated with the mobile device before, and as a starting point only trusts
the external authority.

For authentication each mobile device has a unique key pair installed, and
the mobile device is identified by a token,

���
, that (uniquely) identifies the

public key. To authenticate itself to the lock device, the mobile device has to
send

� �
and its public key to the lock device and then prove that it has the

private key. The easiest way to design
� �

is to make it identical to the public
key. Or to save space, take a secure hash of the public key (using for example
SHA-1[53]) and use that as

� �
. This will generate a token that is unique and

created directly from the public key. The problem with this is that it is not
possible to have any additional requirements attached to

� �
: validity ranges,

usage restrictions, or simply information about the owner of
� �

. It moreover
limits

� �
to be bound to one key pair which will not permit a mobile device

to change key pairs while retaining the same
���

. It also limits usage scenarios
where

���
is a role instead of a device and is shared by many devices and thus

key pairs.

To tackle these issues we propose to use a document that associates
� �

with the necessary information, a certificate. For the lock device to trust the
information in the certificate, the external authority signs the certificate with
its private key2. To validate the signature on the certificate and thus establish
trust to the information about

���
and its public key, the lock device only needs

to have the public key of the external authority. It is assumed that the key pair
of an external authority is not changed within the lifetime of the lock device, so
the public key of the external authority can be pre-installed on the lock device.
The exact form of

� �
can be decided by the external authority, it just needs to

be unique and be stored in a separate field in the certificate. The size of
� �

will
influence both the certificate itself and also the access keys. We propose to use
a SHA-1 hash of the public key, as it is both small and unique.

When it comes to the actual design of the certificates, we choose to use X.509
certificates [34]. X.509 is the de facto standard for making identity certificates,
which makes it possible to use any existing external authority to create the
certificates. The external authority, called a Certificate Authority (CA) in X.509,
can either be established for this purpose only or be an existing CA used for
example inside the corporation governing the lock device. It could also be a
global CA like VeriSign Inc.3 or a national CA like TDC4 here in Denmark. If

2Making a digital signature on the document. In the following signature will always signify
digital signature. For more information about digital signatures see [66].

3http://www.verisign.com/
4http://www.certifikat.dk/ (in Danish)

http://www.verisign.com/
http://www.certifikat.dk/


3.3 Protocol Design 31

any certificate mechanisms exist on the mobile device it is most probably for
X.509, so using X.509 might make it possible to use existing certificate handling
mechanisms. So using this standard adds a lot of benefits and flexibility to the
design, and also follows our design goal of using standards.

There are two accepted storage formats for the certificates, Privacy Enhanced
Mail [44] (PEM) and Distinguished Encoding Rules [36] (DER). They both offer
the same functionality and it is possible to convert from one to the other, but
they differ a lot in size. PEM, as the name implies, is meant for use in emails
and is encoded following the requirements of SMTP [59]. The most important
impact is that data is stored in 7-bit ASCII which naturally takes space. We
have full control over the transport layer, and Bluetooth sets no such limits, so
we choose to use DER encoded certificates which are generally 30-40% smaller
than PEM encoded ones.

3.3.2 Authentication and Integrity

The actual proof that the mobile device has the private key is also handled by
signatures. The mobile device takes the contents of the MobileCred packet,
generates a signature, and appends this to the packet making the packet con-
tain:

��� � , identity certificate for the mobile device

����� �
, access key for the mobile device

�����
	 , signature

Where ����	 � � � � �� ��� ��� ��� � �
,


is a concatenation function5, ��� �
is

the private key matching the public key in � � , and
� � � is the signature gener-

ator. The lock device obtains and verifies the public key of the mobile device
through � � , and can then verify that the signature is made by the mobile de-
vice. This authenticates the mobile device. The problem is that anyone can
reuse this packet. This can be avoided by using a challenge; the lock device
sends a nonce � to the mobile device as part of the LockGreet packet. Nonce
is short for “number used once” and is a (theoretically) unique number cre-
ated for each packet. The mobile device concatenates the nonce, the certifi-
cate, and the access key, signs the result and uses this as the signature, that is,����	 � � ���  � �  ��� � � ��� � �

. The lock device does the same concatenation
and verifies the signature. This assures both authentication, non-repudiation,
and integrity, since no one else than the holder of the private key can make
a correct signature for the packet, and it cannot be reused since the signature
includes the unique nonce.

If there is sufficient room available on the lock device, it is possible to save
transfer time by caching the certificate, so it only needs to be sent the first
time or if the cached information is invalid. With caching, the lock device
moreover only needs to verify the certificate the first time saving computation
time also. The mobile device can be informed about cached information in the

5This concatenation is further specified in Appendix A.



32 Secure Access Control

LockGreet packet. For this use there needs to be a short unique identification
for the certificate and the access key, we propose to use a hash of each for this
purpose. This only needs to be generated once for each unique access key and
certificate and can be pre-generated, so performance is not an issue.

The lock device does not know the mobile device identity when it sends it
the LockGreet packet. Hence, caching presumes that the underlying commu-
nication layer provides some kind of identity information that can be used as
cache lookup. With Bluetooth, this can be provided by the device address. If
the identity information fails for some reason, the mobile device will detect the
missing or wrong information and transmit what is required. The lock device
cannot save transfer time when using a communication layer without this in-
formation, but it can still cache the access key and certificate and if the received
information matches the cached information, it still does not need to verify the
signatures.

The lock device can cache the access key, using the same arguments as for
the certificate. However this could pose a practical security risk. We assume
that the private key is only known by the correct mobile device, but if an at-
tacker should obtain the private key, caching the access key would allow her
to open the door without obtaining the appropriate access key. But our system
is build on the premise that the private key is known only to the correct mobile
device, and that access keys are not secret, so we choose also to cache the access
keys in favor of decreasing transfer or verification time.

The above described procedure has a problem though: MobileCred is
changed to

� ��� � ��� � �
as both � � and ��� �

are empty—the only thing being
signed is the nonce. The nonce is created by the lock device, which means that
a malicious lock device can get anything signed by the mobile device (see 3 in
[5]). The same attack, in a more subtle version, can also be exploited even when
the mobile device sends the certificate and access key. If the mobile device is
tricked into using a specific access key and certificate (created by the attacker)
and the attacker also controls the lock device she will have full control over
what gets signed. Naturally this must not be allowed, so the signature needs
to contain information that is determined by the mobile device. Of course the
information also has to be known by the lock device or else it cannot verify the
signature. In practice this will be solved by additional fields included in the
signature, required for other purposes which are described later.

3.3.3 The Design of the Access Key

Two issues needs to be solved in the design of the access key. First we have
to analyze how to specify which identity is authorized to open which doors.
Second, we need to make sure that the information can be trusted by the lock
device. The problem of access rights is a problem of how to specify these, so
that the lock device and mobile device easily can find and use the needed access
key, while still making the system as flexible as possible for the authority that
governs the lock device. As ever in our scenario, the resource usage has to be
considered also.

There is a large number of combinations of access rights that one could



3.3 Protocol Design 33

think of. As a start, an access key could specify access for:

� one mobile device to one lock device
� multiple mobile devices to one lock device
� one mobile device to multiple lock devices
� multiple mobile devices to multiple lock devices

But an access key could also be limited to a specific time frame, for example
a key that could only be used Monday to Friday in the working hours, or a key
that is only valid from October 1st to November 1st. We could either design
our own access key structure with room for the needed information, or use a
language to specify the rights in. An example of such a language could be:

IF DOOR == 123 THEN
IF USER == ’Alice’ AND DAY == (’SATURDAY’ || ’SUNDAY’) THEN

IF TIME >= 12.00 AND TIME <= 17.00 THEN
RETURN true

ELSE
RETURN false

END IF
ELSE

RETURN true
END IF

ELSE
return false

END IF

Where this signifies an access key that allows the user Alice to unlock the
door 123 at all times, except on Saturdays and Sundays where it is only al-
lowed between 12.00 and 17.00. This allows one to specify the access rights in
an extremely flexible way, should make it possible to create access keys that
will fulfill most scenarios. An example of the semantics for such a language
is KeyNote [9]. A more complete system is found in Simple Public Key Infras-
tructure [21] which defines structures for both authorizations, signatures, and
certificates and also allows for the use of X.509 certificates. Unfortunately it is
still in a draft stage, so work has still to be done before it can be used directly.

A problem with these approaches in general is that we have to be sure that
the language semantically does not have security flaws, and that the parser is
implemented correctly. Moreover the flexibility of the language can also in-
crease the chance of user-made security problems. If the creation of a access
key gets too complex, the creator may fail to understand the correct usage and
make malfunctioning access keys. Another problem is that implementing a
parser for the language on the lock device will make implementation unnec-
essarily complicated, and will take valuable resources from the lock device.
Furthermore, making a system that satisfies every possible scenario is proba-
bly impossible. To follow our design decision of keeping the system simple
when we can, we propose the following fixed structure:

Doors One or more doors for which this access key is valid
Identities One or more identities for which this access key is valid
Validity Start date and end date where the access key is valid
Creator Identity of the creator of the access key



34 Secure Access Control

This has the basic information we consider necessary, and still makes un-
derstanding, creation, and parsing of the information straightforward. The
problem is that it only fits the uses that we have thought of, but we believe that
this structure can satisfy most needs. The exact form of Creator can be cho-
sen for the same reasons as

���
. And for the same reasons we propose to use

a secure hash of the public key of the creator. The timestamps can be in stan-
dard UNIX time format (seconds since 1970) and Doors and Identities are
lists of unique lock device (

���
) and mobile device identities (

���
). A technical

description of the access key is found in Appendix A.

With the certificate, the access key, and the signature generated by the mo-
bile device, the lock device will have to verify three signatures if a full packet
is received. It might be useful to split MobileCred into a packet which only
contains the certificate and the access key, and another packet which contains
the rest of the required information including the signature. This will allow
the lock device to start verifying the certificate and access key, while the mo-
bile device generates the signature. This is an unnecessary complication if the
computation time is negligible, so the decision depends the speed of the algo-
rithms on both devices which will have to be tested in practice (we will analyze
this in Chapter 5).

3.3.4 Communication with the Lock Device

As there are no requirements to secure the communication with the lock device,
LockGreet should just contain:

�
���

, door id

� � , the nonce

��� � � � �
, the identity certificate

��� � ��� � �
, the access key

Where the
� �

is required by the mobile device to find the right access key to
send, and � � � � �

and � � ��� � �
are the hashes of the cached certificate and ac-

cess key respectively.

3.3.5 Decreasing Authentication Time

The above scenario fulfills our design requirements but asymmetric cryptogra-
phy takes time. Depending on the specific lock device and mobile device, the
full protocol may take more than the one second limit found in Chapter 2, mak-
ing the system unusable. We propose to only use asymmetric cryptography for
the first connection and introduce a shared secret, � , that can be used for future
communications.

After successful unlocking, the lock device has established trust to the mo-
bile device, and knows that it has a valid access key. It can then generate � , en-
crypt it with the public key of the mobile device and include it in the Message



3.3 Protocol Design 35

packet. Since � is encrypted with the public key of the mobile device no one
else can decrypt it, and � is only known by the lock device and the mobile de-
vice. The next time the lock device connects to the mobile device it can choose
to let the mobile device sign the MobileCredwith � instead of its private key.
This will save both time and energy after the first successful connect between
each unique device pair.

Assuming that the used symmetric algorithm is secure, the security is not
weakened on the mobile device as long as the size of � has the same security
level as the asymmetric key used (we will analyze this later), and � is guarded
just as well as the private key. Naturally it is also important that � never has
longer validity than the access key or the mobile device identity. The result
will be a much faster unlocking of the door, as a symmetric algorithm will be
magnitudes faster than its asymmetric counterpart.

The problem in this scenario is that an attacker can obtain all the necessary
information needed to unlock a door, just by reading information from the lock
device. To tighten security, � should have a limited validity so the full authen-
tication procedure has to be done frequently. The exact lifetime can depend on
calendar time, on number of uses, or both. Nevertheless, is it still less secure
than using the full authentication procedure, so this feature should be optional
and be allowed or disallowed on each device.

3.3.6 Handling Theft

In our design an access key cannot be used without the proper identity, so
loosing an access key does not directly pose a security risk. The vital point is
to secure the private key of the mobile device. As a starting point we must
assume that the private key is only known to the mobile device, as the security
of the system builds on this. Theft can happen though, and in this section we
will analyze how to handle this.

We propose two ways to guard the private key. First, it should be secured
on the mobile device. Ideally, once the private key is installed on the mobile
device, it should never be possible to extract it and it should not exist anywhere
else. Gutmann [28] reports on many of the security issues that arise if the pri-
vate key is extractable. In the event of a loss, to software or hardware crash,
theft, etc., a new key pair should be created. Preventing other applications from
accessing the private key requires support from the operating system, the hard-
ware or both—the application itself cannot guard against this. An ideal oper-
ating system will allow installation of the private key to a write-only store, that
handles signature generation and verification for the application. This keeps
the private key safe from possibly malicious programs coexisting on the mobile
device, and possible bugs in the mobile device application.

Second, the private key can be password-protected. The application could
require the users to enter a password to decrypt the private key before use, for
example once a day, to limit usage if the mobile device is stolen. The problem
is that the password needs to be entered on a keypad of a mobile phone and
needs to be easy to remember, it will probably be limited to a few numeric
characters. The mobile device can still be used until the password is required,



36 Secure Access Control

and the limited password could easily be broken, but it takes more than just
obtaining the mobile device itself. Again, this procedure should be supported
by the operating system. If not, the private key could be copied to another
device, the password could be broken, and the key could be used on the new
device without limitations.

If the private key or the whole device is stolen, it is important to limit its
use. The first problem is to detect the theft. If the mobile device itself is stolen
detection is easy, but the private key may be stolen without detection. To detect
unauthorized usage of the private key, the mobile device and the lock device
should keep the time when a key pair is used with a specific lock device, a time
stamp � ����� , which is updated after each exchange. The lock device sends � �����
in the Message and if it is not identical to the time stamp the mobile device has,
theft must be assumed and a new private key created for the mobile device.

The problem is how to inform a lock device that a given mobile device
identity is invalid. Normally this is distributed via Certificate Revocation Lists
(CRLs), but as lock devices only communicate with mobile devices this is tricky
(even if there were direct communication with the lock devices, there are still
many challenges with CRLs, see [29, slide 42ff]). Distributing these securely
through the mobile devices, and assuring that all lock devices receive them,
would complicate the protocol and take (valuable) time and energy on both
devices. Instead we propose to keep access key validity periods short. With
access keys only being valid for example one week, an attacker could in the
worst case only use the access key for one week, if the device gets stolen at
the start of the period. After that period the attacker needs to obtain new ac-
cess keys, which should not be created for the identity as soon as the theft is
detected6.

One last precaution that can hinder an attacker from stealing a private key
and use it on another mobile phone, is to include the Bluetooth address of
the mobile device in its identity certificate. The lock device can then control
whether the address of the mobile device corresponds to the certificate, and
disallow unlocking if it does not. This will hinder many attacks as most Blue-
tooth devices cannot change their address—we have however found one de-
velopment board capable of this. The information can be ignored when not
using Bluetooth, and will not make the design depend on Bluetooth.

Finally it should be noted that if something is stored electronically, it is
possible for an attacker to obtain it if she has physical access to the device—
there are unfortunately no means of making a device completely tamper proof.
If somebody steals a mobile device and is determined to retrieve the private
key it will be possible, no matter the software and hardware precautions taken.
For more information on this issue please see [3, 4].

All in all, with all the above precautions implemented, even though a pri-
vate key or mobile device is stolen the possible damage is limited.

6New access keys could be distributed by SMS for example.



3.3 Protocol Design 37

3.3.7 Keeping Time

To be able to validate the timestamps and time limits on the certificates and
access keys, the lock device needs to keep track of the time. We assume that
validity checks that are off by even by a minute or two is acceptable for most
purposes, so the precision of the clock does not have to be high. Any decent
hardware clock can hold that precision for many years, if time was set on the
installation of the lock device.

Hardware malfunctions or extremely long power shortage could make the
clock loose time completely, and the lock device will need a way to recover. As
the lock devices only communicate with the mobile devices, time information
has to be received through these. This will not be a problem as most mobile
phones are equipped with a clock. The problem is whether the information
received from these can be trusted, as the clock could be set wrong, on purpose
or not. An attacker aiming to extend the validity of an obtained access key
would want to turn back time, or set the time wrong just to create havoc.

To guard against attackers the lock device can store the current time to a
stable storage periodically, and in case of a malfunction restore time to the last
stored time. Through this the lock device can obtain a base line, and will allow
it to disregard any timing updates that would turn back time. Assuming that
not all users are evil, the lock device can gather timing updates from a couple
of mobile devices and use a combination of these to update the time. As an
extra precaution the lock device could have a receiver for the DCF777 clock
incorporated at only small cost, that allows clock updates to be received easily
and works well indoors also. The DCF77 cannot be given full trust either, since
it could easily be forged, but would nevertheless give a stable time source in
most cases.

We choose to include a time stamp � ��� ����� in each MobileCred packet
which, combined with a decent hardware clock, should keep timing informa-
tion correct on the lock device. The actual algorithm used to combine the tim-
ing information to correct time in the most suitable way, is beyond the scope of
this project. We refer to the Network Time Protocol (NTP) for further informa-
tion and inspiration [50].

3.3.8 The Final Design

Adopting the notation used in [1], the final structure of the protocol is as fol-
lows (a complete list of symbols is found in Table 3.1):

LockGreet � ��� 	 � ��� � � �	� � � � � � � � � � � ��� � �

The lock device sends the mobile device its identity, a nonce, whether the
mobile device can use a previously shared secret (

� � ), and cache information.

MobileCred � 	
� � � ���� � � � � � ��� � � � ��� � � � � � ���� ��� � � ���
	
7http://www.ptb.de/.

http://www.ptb.de/


38 Secure Access Control

Symbol Meaning
	 Mobile device
� Lock device
�

Identity
� Nonce� � Use shared secret?
� ��� � Hash of �� Certificate��� Access Key��� Public key� � Private key
� � Time stamp
�����	� Current time����	 Signature
� �
� ��� � Generate signature for � with

�
� Shared secret
 ��� ��� � Verify signature in � with

�
� � Unlocking result� � Last usage of ��� � with lock device

Table 3.1: List of symbols used in protocol descriptions.

The mobile device answers with the identity of the lock device and itself, both
are included as they are essential to the meaning of the packet, and therefore
should be included (see [1]). The nonce ( � � ) does not have to be included in the
packet as the lock device obviously knows its value and can concatenate it to
the packet upon receiving and before signing. But considering the limited size
of the nonce (see Section 3.4.3) and the possibilities of errors when including
this before signing and verification on both sides, we include it anyway.

It also sends its identity certificate and access key, but may leave those two
empty if they are reported to be cached by the lock device. It also sends its
current time ( � � � �� � ) and the signature:

���
	 � � � � ������ � � ��� � � ��� � � ��� ��� � ��� � � � ���� ��� � � � � � �
or � �

It is generated with either the private key of the mobile device ( ��� �
) or the

shared secret ( � )—which one is set with
� � .

The lock device parses ��� �
and verifies that the

� �
is in the list of doors,� �

is in the list of identities, and that current time is within the date range. It
further verifies that:

� � � �
� �

�
� ��

 � � � � ����� � � � � �	���
 � ��� � � ����� � � � � �	���

And lastly verifies ���
	 with either ��� � (obtained through � � ) or � depending
on the contents of

� � . If all these are correct, the lock device unlocks the door.



3.4 Cryptographic Algorithms 39

Message � � � 	 � � � � � � ��� ��� ����� ���

The lock device sends the result of the unlocking attempt ( � � ), the last
time the mobile device key pair was used with this lock device ( � � ��� ), and
eventually a shared secret ( � ). This concludes the protocol interaction and the
connection is closed afterwards. A technical protocol description can be found
in Appendix A.

To guard against DoS attacks and malfunctioning devices it is necessary to
set timing constraints (or timeouts) on each step in the protocol. Otherwise
the devices could be locked in one stage of the protocol indefinitely, and block
their use. The problem is that it is not possible to give exact constraints as it
depends on the hardware of both devices. The sum of the timeouts should be
no greater than one second to match the requirement from Chapter 2, so when
the lock device hardware is fixed its maximum timeouts can be calculated. This
can be used to find the timeouts for the mobile device and thus the minimum
requirements for the mobile device.

3.4 Cryptographic Algorithms

To use asymmetric cryptography, we have to analyze two issues: The algo-
rithm and the required key size for the given algorithm, as both of these have
direct impact on both the speed and the security level of the system. We will
start by looking at the algorithms.

RSA [62] and DSA [54] are two generally trusted and well-tested algorithms
that has been used for a long time. In the recent years ECDSA [54] has also
gained ground8, and is regarded as at least as secure the other two (see [66]).
There are also other asymmetric algorithms but we choose to only consider
RSA, DSA, and ECDSA since they are considered secure and reliable, and has
gained general acceptance as common standards by cryptanalysts, software
developers and hardware manufacturers. This makes it possible to find both
standard software and hardware implementations. They are all assumed to be
equally secure, so what makes a difference for us is the size of the keys and the
speed of signature generation and verification.

3.4.1 Key Size

The size of the keys depends on how long the information should be kept se-
cret and on the algorithm chosen. Just a few years ago, 512 bit RSA keys was
considered sufficient for most uses [48, 66], but recent studies show that 512-bit
keys in theory can be broken in mere minutes [68]. This still has to be proved in
practice though. Currently the recommended minimum key size is 1024 bits,

8DSA and ECDSA are two implementations of the Digital Signature Standard (DSS) [54], both
using ElGamal [20].



40 Secure Access Control

both by National Institute of Standards and Technology9 (NIST) and RSA Labo-
ratories [70]. The current NIST recommendations for key sizes for all three
algorithms are shown in Table 3.2. The key size influences both the size of a
signature and the speed of both signing and verification, so the smallest key
size that the security requirements allow should be chosen.

Level Years DSA (bits) RSA (bits) ECDSA (bits)
1 Present - 2015 1024 1024 160
2 2016 - 2035 2048 2048 224
3 2036 and beyond 3072 3072 256

Table 3.2: The NIST recommendations for asymmetric key sizes. It shows how
long time information encrypted today, by a key of the given size, is believed
to be protected. The “Level” definition is our own addition, the rest of the table
is taken from [56, Section 8.8].

It seems reasonable to assume that an access key made today is not valid
after 2015, so level 1 should suffice. The same is true for the mobile device
identity. Recommendations for CAs are level 2 which is also the common prac-
tice. As the mobile device needs only to sign with its own private key, level
1 is required on the mobile device. Since the lock device may need to verify
certificates signed by the external authorities, it also needs to support level 2.
Supporting level 2 will also help prolong the lifetime of the lock device, which
probably will be a permanent installation with no or limited possibilities for
upgrades. The signature sizes for the three algorithms are [66]:

Level RSA (bits) DSA (bits) ECDSA (bits)
1 1024 368 336
2 2048 n/a 464

3.4.2 Choosing an Algorithm

The problem in choosing an algorithm is that the speed is relative to the hard-
ware used, and that there are no common rules for hardware requirements for
the specific algorithms. So the choice is normally based on benchmarks, but
there has not been focus on cryptographic algorithms on mobile phones, as it
has not really been an issue yet. Personal communication with Peter Gutmann
confirms this: “Usually the only benchmarks that exist are for crypto hardware
(either smart cards or crypto accelerators) or faster general-purpose PCs and
servers.” [Mail exchange between author and Peter Gutmann on the cryptlib-
mailing list, May 5th 2003]. All in all, this makes a general recommendation
extremely difficult.

The closest benchmarks we have found is in [15], where the authors imple-
ment PGP [25] on a pager (10 MHz custom Intel 386), a Palm Pilot (16 MHz
Motorola 68000-type Dragonball) and a PC (400 MHz Intel Pentium II). None
of these is a complete match for the mobile devices in our scenario, but proba-

9http://www.nist.gov

http://www.nist.gov


3.4 Cryptographic Algorithms 41

bly somewhere between the pager and the PC10. Some of the results are shown
in Table 3.3.

Type System RSA (ms) DSA (ms) ECDSA (ms)
Level 1
Sign RIM 15889 9529 1011
Verify RIM 1008 18566 1826
Sign PC 67 24 2
Verify PC 4 47 4
Level 2
Sign RIM 111956 n/a 1910
Verify RIM 3608 n/a 3701
Sign PC 441 n/a 4
Verify PC 13 n/a 8

Table 3.3: Algorithm timings on the RIM pager and the PC. From [15].

Signing with RSA is slow compared to verification, and will probably be
too expensive to do on the mobile device, while verification is fast. DSA on the
other hand show the opposite characteristics, with slow verification and fast
signing. For our purpose this is good, as it is the mobile device, which is energy
constrained, that needs to generate signatures. ECDSA is orders of magnitude
faster for signatures, and is only a little slower than RSA for verification on
the pager. These differences between the algorithms are very like the general
characteristic described in for example [66].

Based on these results, it seems like ECDSA is the best candidate (which
also was the conclusion in [15]). If the mobile device hardware is somewhere
in between the pager and the PC as we envision, signing the MobileCred
packet with level 1 will take well under one second, and may also even be
feasible with level 2. Moreover key sizes for ECDSA is much smaller than for
RSA and DSA (see Table 3.2) which makes both key pairs and all signatures
smaller, leading to faster transfer time and smaller storage requirements. For
the lock device, more powerful hardware is needed, as it in the worst case
needs to verify three signatures (see Section 3.3.3). But all in all ECDSA is the
best choice.

One problem with ECDSA is that it still is questionable how many certifica-
tion authorities and cryptographic libraries support it. So a final decision will
have to be based on realistic tests on possible mobile devices, compared with
available support for ECDSA.

An issue with both ECDSA and DSA though, is that they are both part of the
DSS standard which is a signature standard which limited to be used only for
signature generation and verification. This is a problem as the system needs to
be able to do both encryption and decryption to exchange the shared secret (see
Section 3.3.5). There are two different solutions for this. First, both ECDSA and
DSA uses a variant of ElGamal[20], so any implementation of ECDSA and DSA
most probably also has support for ElGamal which can be used for encryption

10The Palm Pilot is a 16 bit processor, we assume that Bluetooth-enabled mobile phones use 32
bit processor.



42 Secure Access Control

and decryption. The problem is that depending on the software or hardware,
the ElGamal functionality might not be accessible. This brings us to the other
solution, which is to use ECDSA or DSA functionalities to perform ElGamal
encryption and decryption. This is described in [66, section 20.1]. The problem
is that to encrypt takes three signature generations and to decrypt takes two, so
it is time consuming. Furthermore it might not work with all implementations.
Our conclusion is that the optimal solution is to use software or hardware,
that supports ElGamal encryption and decryption as well as ECDSA. As the
functionality is already there to support ECDSA, this should not be hard to
assure.

3.4.3 Shared Secret Signature

To make a signature with a shared signature there are two possibilities. Either
to use a symmetric cryptography algorithm like AES [55] or to use a keyed
message authenticated code (MAC) function like HMAC [42]. There are some
theoretical security issues with using a keyed MAC (see [48, section 9.5.2] for a
discussion), but it is assumed to be secure and is widely used, for example in
TLS [17]. We choose to use HMAC-SHA1 (the implementation of HMAC using
SHA-1) instead of for example AES, as SHA-1 is already used for caching, and
HMAC-SHA1 poses only limited extra overhead on the devices. The recom-
mended key-size for HMAC-SHA1, and symmetric algorithms in general, is
80 bits for level 1 [56]. We propose for the size of the nonce, � , to follow these
recommendations also, as it should be at least as difficult to break.

3.5 Using Bluetooth

Even though we have chosen to make the design oblivious to the underlying
communication layer, we still need to analyze how the communication should
be setup. We will also analyze whether any of the security features in Bluetooth
can be used as an option in our design.

3.5.1 Communication

When it comes to the actual transfer of data, Bluetooth offers many differ-
ent communication facilities. The most basic packet types are ACL and SCO,
where ACL is meant for data transfer and SCO for voice transfer. It is evident
that we should use ACL as we are transferring data, and needs the loss-free
connection that it features. So the choice regards which higher level protocol
should be build upon. The lowest available user-level protocol in Bluetooth is
L2CAP. On top of ACL it adds bigger packet sizes, reassembly of these, and
channel multiplexing.

The other possibility is to use RFCOMM which is a serial port emulation
protocol which uses L2CAP, and seems to be the choice for most Bluetooth
profiles11. In addition to the services L2CAP offers RFCOMM offers serial port

11Exactly why is a bit of a mystery for us. For cable replacement, RFCOMM offers extremely



3.5 Using Bluetooth 43

settings (baud rate, status bits, etc.) and flow control. We have no requirements
for this, so L2CAP is sufficiently.

As L2CAP offers channel multiplexing each connection has a Protocol/Server
Multiplexer (PSM), the equivalent of a port in the TCP-protocol [19], so the
lock device will need to know which PSM to connect to on the mobile device.
We can either follow the common practice of many TCP-based applications of
“choosing a value that no one else seems to be using” or use the Service Dis-
covery Protocol (SDP). The SDP is a query service running on a fixed PSM, that
allows a connecting device to obtain a dynamically assigned PSM for an appli-
cation on the host device, not unlike the Port Mapper service used for RPC [71].
Theoretically SDP is usable, but there are problems. First, both device needs
to implement the SDP protocol, being general and rather complicated to im-
plement and parse. Second, the transfer of the extra SDP packets and the data
processing necessary will take valuable time. Unfortunately we have not found
any measurements showing the added cost of using SDP compared to a direct
connection to the service. But to avoid the added complexity of implementing
SDP on both devices, we choose to use a fixed PSM.

3.5.2 Security Features

As previously mentioned, the security features in Bluetooth are all based on
symmetric cryptography and is thus unusable for our main authentication pur-
poses. But as we have seen in Section 3.3.5 the system can also use symmetric
cryptography to decrease authentication time. Bluetooth offers authentication
using an application-defined shared secret (up to 128 bits) [10, Part B, 14.]. It
may be advantageous to use Bluetooth for this, as it is already present on the
devices and may be faster than using our own techniques because it may be
hardware implemented.

The use of these features presumes trust in the security mechanisms im-
plemented in Bluetooth. Two weaknesses has been identified in the Bluetooth
security system in [37], the first one concerning the problem of a MITM (see
Section 3.2.1). The second addresses the problem that keys normally has to be
entered on both devices manually which normally leads to a short key length.
None of these are a problem in this scenario as the mobile device certificate
guards against the MITM attack and keys are generated and exchanged by our
application.

Then there is the security of the authentication system. Authentication is
based upon the knowledge of the shared secret and utilizes the block cipher
SAFER+ [46] (one of the contestants for the AES standard). Kelsey et al. [41]
analyzes the SAFER+ algorithm and finds weaknesses in the 192-bit and 256-
bit versions of the algorithm, but none in the 128-bit version used in Bluetooth.
So to our knowledge there should be no security issues associated with the
security algorithms in Bluetooth.

The actual authentication setup is handled purely by the Bluetooth devices.
So if the lock device assigns the previously exchanged shared secret ( � ) to the

easy portability for existing applications, but for new applications it is a puzzling choice to build
on top of an emulated serial port.



44 Secure Access Control

mobile device address and requests authentication for the connection estab-
lishment, it is only successful if the mobile device has the correct key. The lock
device can then unlock the door and send an affirmative Message packet to
the mobile device. To find out whether using Bluetooth for this is better than
the previously described approach, will need to be tested in practice.

The only problem with this scenario is if the mobile for some reason has lost
the shared secret. Connection establishment will fail, and the lock device has
to try to establish a new connection without authentication, which takes time.
Without using Bluetooth, the mobile device could just sign the MobileCred
packet with its private key and authentication would succeed on the first try.
We cannot see why this event should occur frequently so in practice it should
have very little influence on the system as a whole.

3.6 Device Requirements

With the protocol structure defined we can now analyze its computation cost,
and storage and transfer size. The storage and transfer size depend on:

1. the cryptographic algorithm chosen, as it influences key sizes and signa-
tures

2. the size of the certificates

3. the format of
�

First, we have chosen to use ECDSA and assume that the external authority
uses level 2 and mobile devices use level 1, having a signature size of 464 and
336 bits respectively. Second, the size of the certificate depends on the form
and amount of information that the external authority chooses to include, for
example whether the Bluetooth address is included. Many certificates from
commercial CAs include links to homepages, CA information, etc. We have
not found any informations about sizes of ECDSA certificates but RSA and
DSA certificates (with level 1 for identity and level 2 for CA) ranges from 700
bytes to 2500 bytes. Third, the format of

�
influences both ��� , the protocol,

and the certificate. We assume that they all have the size of a SHA-1 hash as
proposed, which is 160 bits.

An access key will thus have the following size, assuming one lock and one
mobile identity:

� ����� � ��� � � � ����� � ��� � ��� � � � � � ���
	
�

� � � � � � � � � � � 
 � 

	 � � �
�

� � ��
�	 � � �

On top of this comes 10 bytes of overhead required to handle the variable sized
fields (see Appendix A), making the access key total 136 bytes. This allows an
access key to be transfered from the external authority to the mobile phone in
one SMS message, as one SMS message can hold 140 bytes of data (see [23, 24].



3.6 Device Requirements 45

3.6.1 Storage

This means that a mobile device needs to store:

Item Cost (bytes)
Certificate 700 - 2500
Access Key 136

To unlock one lock, 826 bytes of storage is required with a 700 bytes certifi-
cate, and depending on the access keys either 136 bytes extra per door for each
separate access key or 22 bytes per door with multiple

� �
in one access key (160

bits
� �

plus 2 bytes overhead). Respectively 13.3 Kbytes and 3.0 Kbytes for 100
keys.

As a minimum the lock device only needs to store the certificate for the
external authority, 700 - 2500 bytes. For caching purposes, information for one
mobile device takes 838 bytes.

If a shared secret is supported (see Section 3.3.5), the mobile device also
needs to store 80 bits extra per door (see Section 3.4.3). This can be stored
directly in the Bluetooth device if the Bluetooth device supports it. The lock
device also needs to store 80 bits extra per mobile device for which it has set
up a shared key.

3.6.2 Transfer

Under the same conditions as above, the size of the LockGreet packet is:
��� � � ��� � � � � � � � � � � � � � � ��� � �

�
� � � � � � ��
 � ��
 � � � � � � � ��	 � � �

� � � � 	 � � �

The
��� � is a fixed size common header on all packets (32 bits). On top of this

comes a 2 bytes overhead for
� �

because it has a variable size, bringing the total
to 77 bytes.

The MobileCred is:
��� � � ��� � ��� � � � � � � ��� � � � � � �� � � � � � ����	

�
� � � � � � � � � � � 
 � � � � � � � � � 
�
 � � � ��
 � � � � � or

� ��
�� 	 � � �
� � 
�� � or � ��
�
�	 � � �

The size difference lies in the different signature size for ECDSA (336 bits) and
HMAC-SHA1 (128 bits). The overhead is 8 bytes, bringing the total to 945 or
919 bytes. If � � and ��� �

are cached, only 101 or 75 bytes are required.

And Message is:
��� � � � � � � ����� � � ��� � � �

�
� � ��
 � � � � � � � 	 � � �

�

 ��
 	 � � �



46 Secure Access Control

An encryption with ElGamal has the same size as a ECDSA signature, and
there is no overhead in the packet so the total packet size is 51 bytes.

So the maximum amount of data transfered is 1073, and the minimum is
203 bytes if both � � and ��� �

are cached and a shared secret is used for the
signature.

3.6.3 Algorithm Support

Besides storage capacity for the above the mobile device has to be able to gen-
erate one signature, and the lock device will have to verify three signatures
(MobileCred, ��� �

, and � � ). This has to be done in one second to fulfill
the demands identified in the last chapter. If some extra waiting time is toler-
able and caching is possible the first time a new � � or ��� �

is used, the three
verifications for the lock device decreases to one verification after the first ex-
change of new information. The lock device furthermore has to support X.509
certificate verification and parsing.

To establish a shared secret, the lock device also needs to perform an en-
cryption and the mobile device a decryption. The latter is not time critical
though as it can be done after the unlocking is done. And the support is op-
tional for both devices. They furthermore need to support HMAC-SHA1 to
generate and verify signatures with the shared secret.

To support caching the devices should be able to perform SHA-1 to generate
� � � � �

and � � ��� � �
. This is not a requirement though as the mobile device can

always send them, and the lock device can still save signature verifications by
just comparing the full contents of both.

All in all, the minimum demands for the devices is support for ECDSA
signature generation on the mobile device, ECDSA signature verification on
the lock device and X.509 support on the lock device.

3.7 Extending the Protocol

Until now we have focused strictly on the scenario and context given in Chap-
ter 1. In this section we will describe two different approaches that extends the
use of the protocol.

3.7.1 Multiple Authorities

Until now we have only considered a context where there is one external au-
thority governing a lock (a � � ), but it may be useful to enable more than one
authority to create access keys. This will allow whoever is governing the lock
and � � to delegate the responsibility of creating and administering keys to a
third party, that is, outsource it. For mail delivery, it may be useful to allow the
national mail company to create keys for its employees. The third party could
also function as a lock smith if the mobile device or key is lost.



3.7 Extending the Protocol 47

This can be done by permanently installing multiple certificates on the lock
device, but this requires absolute and permanent trust to these authorities given
that there is no direct communication with the lock device. Another approach
is to create a trust hierarchy, where � � authorizes other authorities to create
access keys. In practice this means that � � makes a certificate for another
authority � � � , which the mobile device can transfer to the lock device along
with its access key and identity certificate. This enables the lock device to do � � � � � � � � � and then  � ��� ��� � � ��� � . This approach means that only one cer-
tificate needs to be installed on the lock device when it is installed at the door,
and any extra authorities can be enabled later. It also means that � � can grant
access key creation privileges to � � � for a limited time period, for example one
or two months, instead of giving a permanent carte blanche. The same ap-
proach can be used to allow � � � to create identities also, so the lock device can
do  � � � � � � � � � � .

If this feature is needed the changes to the protocol will be minimal, the
only change is that instead of just sending � � it should be possible for the
mobile device to send a list of certificates. The lock device will need better
support for handling the certificates though. The entire path through the hier-
archy will need to be checked, so that every document in the hierarchy from
the � � � to the ��� �

or
� �

is valid. The mobile device will also have to know
which and how many certificates to send. This can be set explicitly for each key
and identity or the mobile device could have limited support for parsing X.509
certificates. Caching will still work by defining that the � � ��� � �

or � � � � �
in

LockGreet means that not only the given ��� �
or � � is cached, but also all

necessary certificates.

Each certificate will need to have restrictions on their use, or else it would be
possible to create access keys with a identity certificate, that is,  � � � � � � � � � � ��� � � � � �

. These restrictions are standardized in X.509 version 3 certificates.
Note though that even though a certificate is restricted to create identities and
not access keys, it can create matching identities for any valid access key. So in
practice trusting a � � � to create identities, will also allow it to grant access to
any mobile device. This of course presumes that the identities are not bound
to a specific key pair, as proposed by

���
� � � � � � �

.

All in all, with one small extension to the protocol the system becomes
much more flexible. It will increase hardware and software demands on both
devices, so we will leave it out of the proposed system. But we do believe that
this scheme should be considered in any real implementation because of the
flexibility it gives.

3.7.2 Other Communication Scenarios

Another possibility for extending the protocol, is to imagine other communi-
cation scenarios than just mobile device and lock device communication. An
example could be for one mobile device to be able to exchange access keys
with another mobile device: One device could store backups of access keys on
other mobile devices, or a user could receive access keys for a group of mobile
devices and distribute them.



48 Secure Access Control

The same mechanism could be used if a mobile device could create access
keys for a lock device. This would allow a user to use her mobile device to
issue temporary or permanent access keys to her apartment to workers, house-
keepers, etc., and distribute the access keys directly to the mobile device of the
intended user.

Another area that could be interesting is communication between lock de-
vices. This could be used for various purposes like time synchronization, ex-
change of mobile device information, global authorization for multiple lock de-
vices by one “master lock device”, etc. Communication between lock devices
will require a new analysis of the discovery strategy in the previous chapter
and also possible a second Bluetooth radio on the lock device.

We see these issues as interesting topics for further research, that could ex-
tend the use of the system to new scenarios.

3.8 Conclusion

In this chapter we have analyzed and designed a system for access control us-
ing non-secret access keys. The authentication mechanism is based on asym-
metric cryptography, namely ECDSA and X.509 certificates.

It fulfills the goals set, as the protocol is small and simple, allowing an easy
implementation and understanding of it. The hardware requirements are also
low, the minimal storage space for 100 keys is 3.0 Kbytes for the mobile device.
Only space for the certificate of the external authority is needed on the lock
device.

The cryptographic requirements are one signature generation by the mo-
bile device, and three signature verifications by the lock device. With caching
enabled, only one signature verification is needed on the lock device when un-
locking is done with previously exchanged data. If shared secrets are enabled
unlocking can be done using one HMAC-SHA1 generation by both devices. It
is also shown how the authentication can be performed using Bluetooth secu-
rity mechanisms, most likely with an increase in performance.

The access keys will be easy to distribute as they are non-secret, and with
the proper parameters they can fit inside one SMS-message. They can also be
customized to most purposes allowing them to unlock multiple doors, be used
by multiple mobile devices, and have validity restrictions. Furthermore, the
only information that needs to be guarded with care is the private key on the
mobile device. Moreover, mobile devices need not to trust the lock device.

It is also possible for the mobile device to have different identities, bound to
the same key pair or different key pairs. This makes it possible to use the same
mobile device with many different external authorities. We have also proposed
a scheme that with one modification to the protocol allows multiple authorities
to create access key and certificates.

The protocol authenticates the mobile device and we have incorporated and
proposed mechanisms to guard against theft and other attacks. As discussed
the system is vulnerable to active MITM attacks, but even if we could secure



3.8 Conclusion 49

the system against these, it would still be possible to mount a relay attack. We
believe that the protocol is the best solution possible for the given requirements
and context.

The system still needs to be evaluated in practice, where the general system
speed and the different cryptographic algorithms should be tested. Moreover
the caching effect on transfer and computation speed should be evaluated, and
whether it is feasible to split of MobileCred packet in two. This will be done
in Chapter 5.



50 Secure Access Control



CHAPTER 4

Implementing the Prototype

I’ve had a wonderful time, but this wasn’t it.
– Groucho Marx

To test our design and answer the open design questions regarding time
and energy usage we will implement a prototype. In this chapter we will
briefly present the implementation.

For the mobile device we have chosen to use a P800 which is the top-of-the-
line mobile phone from Sony Ericsson. The lock device will be implemented
on a standard PC running Linux to make the implementation easy, as our main
focus is on the mobile device.

We will first give a brief description of the P800, and then describe the chal-
lenges met during implementation.

4.1 The Mobile Phone

The P800 is the flagship of Sony Ericsson Mobile Communications1 and is a
mixture between a mobile phone and a PDA (see Figure 4.1 for a picture of
it). It offers two modes of operation, a traditional mode with a numeric key
pad and a full screen mode operated by a stylus using point-and-click and
handwriting recognition2. Apart from this the only other controls are a 5-way
jog-dial and two buttons (camera and Internet). The software includes: cal-
endar, address book, email client, Internet browser, MP3 player, video player,
Microsoft Word/Powerpoint/Excel viewer, and lots more3. The official hard-
ware specifications are [22]:

1http://www.sonyericsson.com/.
2The keypad is in fact 100% mechanical. Pressing a button just presses a touch-sensitive virtual

keypad on the underlying screen.
3We have been told that if you are really smart, it is even possible to do a phone call :).

51

http://www.sonyericsson.com/


52 Implementing the Prototype

Processor ARM9
Physical size 117 x 59 x 27 mm, 158g
Screen Touch-sensitive TFT screen, 208 x 320 pixels, 4096 colors
Battery Li-polymer (3.6V, 1000 mAh), talk time up to 13 hours,

standby time up to 400 hours
Communication GSM, GPRS, HSCSD, Bluetooth, and IrDA
Operating System Symbian OS V7.0
RAM 16 MB
Storage 12 MB flash available on board, and 16 MB on Memory

Stick Duo
Programmability C++ and Java (PersonalJava, J2ME CLDC 1.0 and MIDP

1.0)

The CPU speed is not mentioned, but using the SDK this is reported to be
156 MHz. Besides the above, the phone also has a serial port which is accessible
through an USB-cradle. All in all a very potent platform!

Figure 4.1: Picture of the Sony Ericsson P800 phone.

4.1.1 The Symbian Operating System

The P800 uses Symbian OS as the operating system. Symbian OS is created
by Symbian Ltd.4 which is a company owned by Ericsson, Nokia, Panasonic,
Motorola, Psion, Samsung Electronics, Siemens, and Sony Ericsson—in short,
most of the major mobile phone companies. Symbian OS is a continuation the
operating system on the PDAs manufactured by Psion PLC5, called EPOC.

The first mobile phone to use Symbian OS was the Ericsson R380, and cur-
rently it is used in Nokia 92xx series (Symbian OS v6.0 / Series 80), Nokia 3650
and 7650 (Symbian OS v6.1 / Series 60), and of course in the Sony Ericsson
P800 (Symbian OS v7.0 / UIQ). In Nokia Developer Network Newsletter - EMEA
(May 7, 2003) the following is reported:

Levin [David Levin, CEO of Symbian, red.] also highlighted the
dramatic rise in Symbian OS phone shipments over the past three

4http://www.symbian.com
5http://www.psion.com

http://www.symbian.com
http://www.psion.com


4.2 Implementation 53

years. He told the audience that in 2001 approximately half a mil-
lion Symbian OS phones shipped. But in 2002, the number of ship-
ments rose to more than 2.1 million, and in the first quarter of 2003
alone, nearly 1.2 million phones shipped. Looking to the future,
Levin revealed that there are currently 21 products in development,
of which the SX-1 from Siemens, the D700 from Samsung, the Nokia
N-Gage(TM) mobile game deck, and the P30 from BenQ have been
publicly announced, and an additional 19 projects are in the early
stages of planning.

So Symbian OS is on a rise. The only alternative to Symbian OS is Microsoft
Smartphone (based on Windows CE 3.0) which has yet to gain ground. For the
moment Symbian OS looks like a platform that has a future.

Symbian OS can be programmed in C++ and Java. Implementing the sy-
stem in Java will allow us to use the application on any Java equipped device.
The problem is that the Bluetooth API for Java (JSR 82 [51]) has only recently
been finalized (March 22 2002), and there is no support for it in Symbian OS
7.0. Support has been announced in the newest version of Symbian OS, version
7.0s [18], but whether an upgrade will be available for the P800 is unknown to
us6. On top of the missing Bluetooth support, the Java support in general is also
limited—the libraries available seems to be targeted at game development. Be-
cause of these issues and combined with the questionable performance of Java
in general, we will implement the system in C++.

4.2 Implementation

In implementing the prototype system we have aimed at making the code as
portable as possible. First of all because the exact hardware platform for the de-
vices was not fixed at the start for the project. The delivery time of the mobile
phone was uncertain, and it should be possible to move the lock device ap-
plication from the PC to a more suitable platform. Secondly we did not know
whether we would have proper debugging possibilities on the devices, so the
more code that could be tested on a PC the better.

The system can be divided into four parts: The application logic, the proto-
col, Bluetooth support, and cryptographic support. The application logic and
the protocol could be implemented generically, but the last two parts needed
to be specialized for the two different platforms. We will describe the problems
faced when implementing the last two parts using Linux and Symbian OS in
the following.

6Nokia’s newest Symbian OS phone, the Nokia 6600, has support for Java
MIDP v2.0 with Bluetooth support. Release is announced to be 4th quarter 2003
(http://www.forum.nokia.com/main/1,6566,015_291,00.html).

http://www.forum.nokia.com/main/1,6566,015_291,00.html


54 Implementing the Prototype

4.2.1 Linux

Linux has two choices for Bluetooth support, the built-in BlueZ [60] stack or
the Nokia-maintained Affix stack [39]. We have previously used BlueZ with
success, but found that it lacked the proper support for the Object Exchange
Protocol (OBEX) [47] that was needed to transfer files to the P800. Affix has full
support for OBEX so for ease of use we also used it for the application with
success.

For cryptographic support we experimented with two different libraries
for Linux: OpenSSL [61] and Mozilla NSS [57]. We found that the utilities for
creating certificates are far from mature in OpenSSL, and it took quite some
time for us just to be able to create a valid certificate. Moreover, the library
itself is rather complicated and was not intuitive for us. In the Mozilla NSS,
the utilities for creating certificates were much more mature and the library
was more intuitive for us to use. Moreover, the library automatically handled
storage and retrieval of certificates, so we chose to use Mozilla NSS for the
implementation.

The actual implementation was then rather straight-forward with no major
difficulties. Both the lock device application and the mobile device application
are implemented on Linux.

4.2.2 Symbian OS

Implementing on Symbian OS was a different kind of story. The first challenge
was to make the SDK work with Linux, as this is our preferred development
platform. The SDK is made for Windows, but as the compiler used is GCC
it seemed feasible. Others had gotten the same idea and we located a utility
to convert the SDK from Windows to Linux7. All in all, we did get the SDK
to work, and have found no problems related to the fact that we are using it
with Linux. We have provided an introduction on how to setup the SDK and
develop for Symbian OS with Linux in Appendix B.

The C++ API [73] provided with Symbian OS is extensive, to say the least.
There is support for threads, timers, GUI, database systems, certificates, TCP/IP
(including IPSec), Bluetooth, multimedia, web-technologies (HTTP, WAP, etc.),
and lots more. So the API looks very promising, but we found some challenges
in programming for Symbian OS though. First, there is no support for the C++
Standard Template Library (STL) at all, not even a string class8. There are sup-
port for data structures like lists and queues, but they are Symbian’s own im-
plementations. Second, Symbian has exception support but it is proprietary
using preprocessor macros, instead of using the standard C++ exceptions. This
means that the programmer manually has to push and pop objects to and from
a CleanupStack to secure cleanup during exceptions—in our opinion this is

7It took some time before we realized that the SDK was working properly, since we kept getting
errors when we tried to compile quite a few of the SDK examples. We later found out that this is
normal, they do not work with Windows either. . .

8There has been efforts to port STLport to Symbian OS (see
http://www.3glab.org/developer/symbian/). Unfortunately we did not have time
to test it.

http://www.3glab.org/developer/symbian/


4.2 Implementation 55

an invitation for bugs and most definitely a job for the compiler. Third, al-
though there is some C standard library support and a lot of POSIX-compliant
functions, a function like select is missing and fcntl is in the header files
but nowhere to be found in the libraries. These three issues make the learn-
ing curve steep for existing C++ programmers, and makes porting of existing
applications and multi-platform development difficult—more difficult than it
ought to be.

Other issues also make the programming task difficult. One has to do with
the way Symbian OS is used by the mobile phone companies. The version
of Symbian OS used in the specific mobile phone is not a pure version of the
OS. That is, the mobile phone companies specializes the OS for their specific
products, and add, leave, or change functionality in the specific version. As
the documentation seems to mainly be maintained by Symbian, the discrep-
ancy between the documentation and the actual OS can be significant. In
our work we found that the documentation-advertised classes for CertStore
and CCertStore needed for handling certificates, is not included in the SDK.
Searching through the header-files we found an undocumented class called
UnifiedCertStore, but our experiments with it has only resulted in errors.
Another challenge is that Sony Ericsson, or Symbian, for some reason keep
functionality hidden from third party developers. By disassembling the binary
library files we found functions for signature verification and generation with
RSA and DSA. These could be used in our application, but with nothing but
the names of the functions to work with it would be very unsafe to use them.
We never made the cryptographic libraries in Symbian work, so we had to im-
plement the cryptographic support.

For debugging, Symbian OS advertises that it has on-target debugging sup-
port using either MetroTRK9 or the GDB10, but unfortunately this is one of the
features that Sony Ericsson has left out in the P80011. Debugging on the phone
was difficult, since the phone has limited screen space and offers no keyboard
to control debugging. Moreover the OS cleared the program screen when an
exception occurred, and from time to time even the OS crashed. All in all de-
bugging directly on the phone was difficult, and we needed some kind of re-
mote debugging. We could not use Bluetooth for debug communication as this
was used by the application itself. By trial-and-error we found out that the
serial port is not directly accessible, and ended up using the IrDA port and a
Palm Pilot as a debugging console (it was the only other device we had with an
IrDA port). Luckily we later found a somewhat hidden debugging library that
allowed us to do very basic debugging, by printing debugging information to
the serial port.

Since the cryptographic libraries in Symbian OS did not work for us, we had
to implement the cryptographic support ourselves. We first looked at Mozilla
NSS which we used on Linux, but found that it was to big a task to port it.
We found another library called cryptlib [27], which has a more modular struc-
ture and is written in standard ANSI C. We did some attempts to port it, but
without a proper debugger we never made it work. Unfortunately we did not

9http://www.metrowerks.com/
10http://www.gnu.org/software/gdb/
11Rumors say that it is under development.

http://www.metrowerks.com/
http://www.gnu.org/software/gdb/


56 Implementing the Prototype

find any better alternatives. All cryptographic libraries that we have found are
very complex and functionalities are heavily interconnected, and it is thus very
difficult to isolate and port just the needed functionality. To get some crypto-
graphic support we ported the RSA reference implementation made by RSA
Laboratories, the RSAREF2 toolkit. This allows us to sign and verify with both
public and private RSA keys, but no support for parsing certificate content and
the highest key size available is unfortunately only 1024 bits.

Implementing the support needed for Bluetooth was not that troublesome
when it came to listening, sending, or receiving12. We never got inquiry to
work properly though. There are header files for doing direct HCI calls, but
the libraries are missing. Therefore inquiry has to be done through a generic
HostResolver class which has no options for inquiry length and maximum
number of devices returned. Furthermore, we were never able to retrieve any
valid Bluetooth addresses, although doing a Bluetooth Discovery through the
GUI worked fine. We are either using the API incorrectly or the API is broken.
We will further examine this in Chapter 5.

Another part that did not work either was the setup of the Bluetooth au-
thentication. It is not possible to set a PIN code for connections via the SDK.
In fact, Symbian OS presumes that this should be set via the GUI and insists
on presenting a Enter PIN code window when authentication is requested on the
mobile device side.

Finally we did get the mobile device implementation to work, but unfortu-
nately with quite limited functionality. It is only capable of using RSA signa-
tures, with no certificate parsing or support for shared secrets. We also imple-
mented testing applications for the energy measurements.

4.3 Resource Cost

The mobile device application for Symbian OS is around 60 Kbytes, including
the RSA support13. As this is a prototype and we have not optimized the code
for running on Symbian OS, the resource cost is not fair in comparison with
an optimized implementation. But compared to the resources available on the
P800, the resource cost is insignificant.

The lock device implementation is around 80 Kbytes with support for both
Mozilla NSS and the RSAREF2, but excluding the library cost of Mozilla NSS
and the Affix Bluetooth stack.

4.4 Conclusion

Implementing the protocol itself was easy, which was one of the design goals
and the overall implementation for Linux was also straight-forward. Imple-

12It did come as a surprise for us though, that a recv-command threw away any remaining data
if there was not enough room in the buffer given. This behavior is not reflected in the documenta-
tion, which we also reported to Symbian whom promised to fix the documentation.

13Symbian OS did not let us examine the RAM used.



4.4 Conclusion 57

menting for Symbian OS was more difficult than we had imagined. Most of the
issues mentioned in the previous sections was not documented or announced
anywhere, and we had to find out by trial-and-error. We also found that the
learning curve was rather steep, mostly because of the missing support for STL
and the proprietary exception-handling system. This, and the fact that the doc-
umentation and the implementation differs quite a lot makes developing more
cumbersome and tedious than it ought to be, and made the implementation
take a lot of time—too much time. It seems like Symbian OS still has some
rough edges that needs to be taken care of, before third-party developers can
get the full advantage of the API.

All in all we did make a functional prototype with limited functionality.
We would have liked to have other algorithms implemented, and also consid-
ered using GnuPG14 or OpenPGP15 for this instead of generic cryptographic
libraries, but time did not allow us to investigate it further.

For a full implementation a cryptographic library would be needed, prefer-
ably the one included in Symbian OS. Besides better, and probably faster, cryp-
tographic support it would allow the application to use security features in
the OS to secure the private key. Moreover, the code should be optimized for
the specific platform for both mobile and lock device to obtain the best perfor-
mance.

14http://www.gnupg.org/
15http://www.openpgp.org/

http://www.gnupg.org/
http://www.openpgp.org/


58 Implementing the Prototype



CHAPTER 5

Evaluating the Design

Not everything that can be counted counts,
and not everything that counts can be counted.

– Albert Einstein

In this chapter we will evaluate the design using the prototype implementa-
tion. Our overall goal is to evaluate the impact of the application on the mobile
phone energy consumption. The prototype should preferably have minimal
impact on the energy consumption while still being able to unlock the door
within our time constraints.

We start by describing the test setup used, and then analyze the P800 mobile
phone to construct an energy cost model of the general device behavior. We
will then analyze the energy consumption and performance of both Bluetooth
and the cryptographic support. After that we will measure the time and energy
used by the prototype itself.

5.1 Test Setup

Our first approach to measure the energy usage on the phone was to insert a
multimeter directly in series between the battery and the mobile phone, but
the phone refused to boot with that arrangement. The second approach was
to insert a resistor instead and measure the voltage drop over it. This worked,
but with no knowledge about the electrical characteristics of the phone, the
best suited resistor had to be found by trial and error. The ideal would be a
resistor with high resistance, because the higher the resistance, the bigger the
voltage drops, and the less precision needed for the multimeter. However, we
found that if the resistance was too high it would leave insufficient energy for
the phone itself, and the phone would not function. We tested different sizes
and found that 0.3 Ohm was the highest resistance possible. The multimeter

59



60 Evaluating the Design

used was a Wavetek Meterman 2351 which supports readouts on a serial port
approximately twice a second. Readings were recorded to a PC and converted
to Watt using Ohm’s law. A picture of the test setup can be seen in Figure 5.1.

Figure 5.1: Picture of the measuring setup

The precision of the measurements depends on the precision of both the
resistors and the multimeter, the stability of the voltage on the battery, and the
resistance of the wires connected to the resistor. The resistors have an accu-
racy of

�
5% and the multimeter one of

�
0.25%. The stability of the voltage is

important because the voltage is used to calculate the Watts using Ohm’s law.
Ideally the voltage should be measured continuously, but a second multimeter
for this purpose was not available during our experiments. We did some initial
measurements and found that the battery deviated less than 1% from 3.6V for
the first hour at least. All our measurements were made on a full battery. If
the measurements are relatively short, the voltage difference is negligible. We
also measured the resistance in the wires connected to the resistor and found it
to be immeasurable, so they will not influence the measurements either. All in
all, the measurements will have an inaccuracy of maximum 6–7%.

Another factor that influences the measurements is the physical environ-
ment, as we are measuring wireless communications. Unfortunately we did
not have a noise-free environment to test in, so all measurements were per-
formed in an office environment with activity from other mobile phones, wire-
less LANs, etc. The downside is that the environment will make the measure-
ments fluctuate, but on the positive side it does give more realistic measure-
ments for a normal usage scenario compared to a noise-free environment. We
have done all the measurements with the phone being placed in the same spot
in order to obtain the same level of background noise.

All measurements were performed a minimum of five times and for at least
ten minutes. To make the included graphs easier to read, measurements were

1http://www.metermantesttools.com/products/TMeters.asp

http://www.metermantesttools.com/products/TMeters.asp


5.2 The Mobile Device 61

done for the shortest period possible while still showing the important fac-
tors. For short experiments we have performed the experiment in succession
and displayed all the experiments on the same graph, with a random wait in
between arbitrarily chosen to be between 12 and 17 seconds.

All experiments have been done with a CSR-based Microsoft USB Bluetooth
unit as the Bluetooth unit for the PC. The unit was placed approximately 50
centimeters from the mobile phone.

5.2 The Mobile Device

In this section we will analyze the energy usage of the mobile phone in general.
This will reveal the characteristics of the mobile device, which are not other-
wise available. These informations can be used to affirm our assumptions and
hopefully validate our design decisions in the previous chapters.

There are no public energy specifications for the mobile phone. We have
tried to contact Sony Ericsson, but have not been able to get any information.
The only available information is presented in Section 4.1, which is the voltage
of the battery (3.6V), the capacity of the battery (1000 mAh), best case life time
during conversations (13 hours) and standby (400 hours). From this we can
deduce that the battery should have 12960 Joule, standby should consume � 9
mW and conversations � 277 mW. For the rest of the functionalities there is no
information. In this section we will measure the energy usage of the different
operating modes and functionalities and build a cost model.

5.2.1 Operating Modes

We will start by measuring the cost of the different operating modes of the
phone. First how much it costs to have the phone in standby or idle mode, and
after that how much some of the functionalities cost, that is, busy mode.

Idle Mode

Before we can make any energy measurements we must find out how the
phone behaves without being used and with Bluetooth disabled. We assume
that the following three consumes almost all of the power:

� The CPU

� The GSM radio

� The display

The radio can be turned of by setting the mobile device in a flight mode,
that turns of the radio part of the device to allow it to be used in an airline
or other areas where a mobile phone is disallowed. The display can have the
back-light turned on or off, and the phone has power-save modes that saves



62 Evaluating the Design

power by turning the display off after a specific amount of time. The power
usage of the CPU cannot be influenced by user-available settings. According
to the ARM website2, ARM9 CPUs come in two varieties where the only differ-
ence is the cache size. Depending on the type of silicon used (0.18 or 0.13 ��� )
the maximum power consumption (including caches) is reported to be either� � � 	 ��� � � � 
 ������
	 � � ��
 ��� or

� � � 	 ��� � � � � � ������	 � � � � � � ��� . Whether this
holds for the CPU in the phone is questionable as it may be a custom edition
of the chip, but it does give a hint about the power usage.

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

boot 1 boot 2

boot 3 light dimmed

idle 1 screen off

idle 2

Figure 5.2: This graph shows six of the modes that the phone enters from boot-
ing until it reaches its final idle mode. Initially back-light is on, power-save is
on and it is in flight mode.

To reveal the different power modes of the phone, measurements were
made for all the possible combinations of the radio and back-light modes for
three minutes from the phone is turned on (see Appendix C for the graphs).
It takes 150 seconds before the phone reaches its final idle mode after being
booted. The lowest power consumption is � 9 mW, in flight mode with the
screen turned off. The screen has four modes: On ( � 320 mW), dimmed back-
light ( � 140 mW), no back light ( � 20 mW), and off. The CPU seems to have
two idle modes, idle 1 using 12 mW and idle 2 using 9 mW (entered after 120
seconds). We have pointed out some of the different modes in Figure 5.2.

We want to use the mode where the power consumption is as constant as
possible for our measurements, to obtain a constant baseline. This seems to be
flight mode with no back-light and no power-save. We measured the energy
consumption of this mode over a couple of hours, to see the general behavior
and to verify whether it kept constant. The results found in Figure 5.3 on the
next page show that the power consumption seems to be rather constant at
about 29 mW, which probably is the cost of the CPU running in idle mode 2

2http://www.arm.com/armtech/ARM9_Thumb.

http://www.arm.com/armtech/ARM9_Thumb


5.2 The Mobile Device 63

 0

 50

 100

 150

 200

 250

 300

 0  2000  4000  6000  8000  10000  12000

m
W

seconds

Avg: 28.0  Min: 26.4  Max: 154.8

Figure 5.3: The energy consumption in flight mode. Back-light and power save
are off.

and the screen. Something also consumes power every 30–40 minutes, around
50 mW a couple of times over a couple of minutes. We stopped all possible
programs, so whatever it is we cannot avoid it, and thus have to be aware of it
in our measurements.

As we are measuring for such a long period, there is a chance that the volt-
age from the battery could change (see Section 5.1). Inspecting the graphs re-
veals that the baseline keeps at the same level which either means that the
voltage is stable, or that the energy usage of the system is increasing at exactly
the same speed as the voltage is dropping. We find the latter unlikely, and
conclude that the voltage change is negligible.

For measuring anything that uses Bluetooth we need to use another mode
though, because the flight mode also turns off Bluetooth. We have tried to find
a way to have Bluetooth turned on without GSM also being on, but it is not
supported on the phone. The phone refuses to boot without a SIM card so that
is not a method to disable GSM. We have also tried to use invalid SIM-cards,
but the phone just keeps on searching for a network. Even if it gives up on
trying to find a valid network for the SIM-card, it will still keep a connection
to one of the available networks since it always has to be possible to make
an emergency call with the phone. The average energy consumption for the
normal mode is � 33 mW as seen in Figure 5.4(a) on the following page. The
problem is that it is not a constant usage, it fluctuates, so it can be difficult to
discern the GSM usage. Fortunately, the GSM power usage comes in peaks
as (see Figure 5.4(b)), so as long as the functionality being tested has a stable
power consumption it will be possible to disregard the GSM peaks.



64 Evaluating the Design

 0

 50

 100

 150

 200

 250

 300

 0  2000  4000  6000  8000  10000  12000

m
W

seconds

Avg: 33.3  Min: 27.6  Max: 256.8

(a) Long period.

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

(b) The first three minutes.

Figure 5.4: The energy consumption in normal mode. Back-light and power
save are off.



5.2 The Mobile Device 65

Lastly there are the two idle modes of the CPU, which gives a difference
around 4 mW. As far as our experiments show, idle mode 1 is only used during
boot so it can be ignored.

Busy Modes

Having measured the idle modes of the phone, we will now measure the dif-
ferent busy modes. To be able to relate the power usage of our application to
the power usage of the normal functions of the phone, we have tested the fol-
lowing: using the GUI, having a conversation, using the camera, and playing
a game.

Having a phone conversation takes around 250–300 mW, not far from the
specifications. Using the GUI or the camera costs 500–600 mW, while playing
a game ranges from 800 mW to 1000 mW. Compared to these numbers it was
a bit surprising to see the cost of just touching the screen. Holding the pointer
still at the same position on the screen costs 500 mW, no matter whether the
program has a GUI or not (a console mode program). This is probably caused
by the endless processing of pointer events from the screen. For a GUI appli-
cation this is unavoidable, but for a console program this is not necessary, and
must be considered a design flaw3. Lastly, we tried to stress the phone max-
imally by playing a game with back-light on, full sound, a GSM connection,
and Bluetooth connection on at the same time—this peaked around 1570 mW.
The graphs are shown in Appendix C.

To find the cost of having the CPU running at full speed, we created a sim-
ple program with a busy loop increasing a simple counter. The cost of this is

� 508 mW as seen in Figure 5.5 on the next page. There are probably other
hardware parts than the CPU that takes power in this mode, especially if the
processor has the specifications found in Section 5.2.1, as it should then use a
maximum of 124 mW. We will not go in to further speculations about what it
is, but just conclude that the busy mode costs around 508 mW.

Summary

To summarize the above measurements, the cost of the phone functionalities
are:

Function Average cost (mW)
Idle mode, flight 29
Idle mode, normal 33
CPU in busy loop 508
Having a conversation 250–300
Using GUI / camera 500–600
Maximum measured 1570

3We also tried to enter the lock mode of the phone which disables all input except the unlocking
keys, but the same phenomenon was observed here. As the screen is needed to unlock the phone
some kind of polling is necessary, but we believe that less frequently would do.



66 Evaluating the Design

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Min: 27.6  Max: 510.0

Figure 5.5: Energy usage when the phone executes a program with a busy loop
for 60 seconds.

Thus, to find the power consumption of a program we can subtract 29 mW
when the phone is in flight mode, and 33 mW when it is in normal mode.

5.2.2 Bluetooth

After having established some knowledge about the phone’s general charac-
teristics we can now begin to measure the energy consumption for Bluetooth.
Bluetooth functionality can be divided into:

Idle: Bluetooth off, on (no inquiry or page scans), connectable (page scan), and
discoverable and connectable (page and inquiry scan) [Figure 5.6]

Discovering: Answering an inquiry, and doing inquiry [Figure 5.7]

Connecting: Failed connect, and being connected [Figures 5.8 and 5.9]

Transmitting: Receiving data, and sending data [Figure 5.10]

We start by measuring the cost of having the Bluetooth radio turned on in
its various modes. As we can see in Figure 5.6 on the facing page, the differ-
ence between the normal mode with Bluetooth off and being connectable or
discoverable is noticeable, but it is difficult to say exactly how much with the
GSM traffic going on. Looking at the average energy consumption, the cost of
having Bluetooth turned on is around 4 mW and 7 mW accordingly. Having
the Bluetooth radio turned on without being connectable was not directly ac-
cessible, and with the small cost of being connectable we did not investigate it
further. All in all, having the Bluetooth radio turned on is cheap.



5.2 The Mobile Device 67

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Avg: 36.7  Min: 28.8  Max: 183.6

(a) Connectable (page scan).

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Avg: 39.7  Min: 28.8  Max: 103.2

(b) Discoverable and connectable (page and inquiry scan).

Figure 5.6: The energy usage of the phone with Bluetooth in two different idle
states.



68 Evaluating the Design

The cost of answering an inquiry is seen in Figure 5.7(a) on the next page,
where the dotted vertical line pairs show the start of the inquiry procedure
on the remote host, and when the answer is received. The only conclusion
we can give is, that whatever amount of energy being used it is obscured by
the GSM activity—the power used is negligible. Performing inquiry on the
phone consumes a lot more energy, as seen on Figure 5.7(b) on the facing page.
As reported in Section 4.2.2, we had troubles using the inquiry API. From the
graphs it seems like the inquiry is being done, although the application layer
malfunctions. Software behavior moreover indicates a caching mechanism, but
energy usage does not. The dotted vertical line pairs on the figure denote the
start and the end of the inquiry function call, but except for the first call, all
calls return immediately and only every other call uses energy (seen on Figure
5.7(b) where the dotted line pairs, all except the first, looks like one line). Our
interpretation from the energy usage is that inquiry is being done, and the
inquiry lasts for � 13 seconds. This coincidently is close to

�	� � � � ��
 �
�
� � � 
 � 4,

and uses approximately
� � � ����� � � ��� �

� � � ��� . Note also the slack-phase
after the inquiry, where the energy usage keeps at � 57 mW for 17 seconds
before returning to the normal idle state. Without counting in the slack, the
cost for doing an inquiry is

� � � 
 � � � � � ��� �
� � ��� � � � � , while answering an

inquiry is unnoticeable.

When it comes to a Bluetooth connection, the energy consumption rises
considerably. As seen in Figure 5.8 on page 70, an incoming connection takes
around

� � � ����� � � ��� �
��� � ��� . This rather expensive cost probably also

covers the cost of the busy mode at 508 mW, so the cost of Bluetooth itself is� � � ����� � ��
 ��� �

 � ��� . After 180 seconds the phone changes its power

consumption and the connection takes 100 mW. Subtracting the idle cost gives
77 mW which is not far from the 82 mW, so around 80 mW is probably the
true cost of maintaining an incoming Bluetooth connection. Handling a failed
connection takes 3.5 seconds, costing

� � � � � � ��
 � � � � � ��� �
� � � 
 � � � � .

The fact that it takes energy to make a connection to a closed port (that is,
a port that no program is listening on), may seem surprising at first, but the
phone has to receive and process the incoming request before it can determine
what port it is for. A strange thing is that whenever an incoming Bluetooth
connection is detected, no matter if it fails or is successful, the phone awakens
itself from any power-save mode—even though there is no action on the screen.
That means that any Bluetooth connection also has the cost of bringing the
phone away from idle mode (including eventual back-light, etc.). We can only
conclude that this is a design flaw.

If the phone is the initiating part (see Figure 5.9 on page 71), doing a con-
nection costs around

� � � ����� � � ��� �
� � � ��� , and the phone also powers

down after 180 seconds to 104 mW. Hence, for the first 180 seconds, initiating
a connection is cheaper than handling an incoming connection. Failed connec-
tion attempts cost around 160 mW for 10 seconds giving a total of

�	� � � � � � � �� � � ��� �
� � � � � � , a lot cheaper than receiving failed connections.

We also experienced the same slack phenomenon we experienced during
inquiry, varying from 20 seconds in Figure 5.8(b) to 28 seconds in Figure 5.8(a).

4Inquiry in Bluetooth is performed in 1.28 second intervals.



5.2 The Mobile Device 69

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Avg: 37.8  Min: 28.8  Max: 92.4

(a) Answering inquiries.

 0

 50

 100

 150

 200

 250

 300

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Avg: 72.5  Min: 28.8  Max: 288.0

(b) Doing inquiries.

Figure 5.7: The energy usage of the phone when answering and doing Blue-
tooth inquiries. The dotted lines shows in pairs the start and end of the inquiry
commands. In Figure 5.7(b) the pairs are only visible in the first call, the rest
looks like one line.



70 Evaluating the Design

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Min: 28.8  Max: 618.0

(a) Receiving connections to closed port.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200  250  300  350  400  450

m
W

seconds

Min: 28.8  Max: 644.4

(b) Receiving connection, open for 300 seconds.

Figure 5.8: The energy usage of the phone when receiving Bluetooth connec-
tions to a closed and an open port.



5.2 The Mobile Device 71

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Min: 27.6  Max: 349.2

(a) Initiating connections to closed port.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200  250  300  350  400  450

m
W

seconds

Min: 27.6  Max: 627.6

(b) Initiating connection, open for 300 seconds.

Figure 5.9: The energy usage of the phone when initiating Bluetooth connec-
tions to a closed and an open port.



72 Evaluating the Design

The same 3.5 seconds experienced after a failed connection is also experienced
after successful connections.

We then send and receive data over the connection, as seen in Figure 5.10 on
the next page. Except for the power-down stage after 180 seconds, the graphs
are almost exactly the same. Even though data needs to be transmitted and pro-
cessed, it does not cost more compared to having the connection open. After
180 seconds there is a difference: receiving data on the mobile takes on average� � 
 ����� � � ��� �

� � � ��� and sending takes
� � 
 ����� � � ��� �

� � � ��� .
Whether this is the cost of transferring data or the program itself is hard to say.
If the communication takes more than 180 seconds in our scenario something
is wrong, so we choose not to investigate this further.

The slack is also present again and takes around 30 seconds, so except for
answering an inquiry every Bluetooth action on the phone has this slack for
some time ranging from 17 seconds to 30 seconds always taking around 57
mW, or 24 mW more than being idle. Put differently every Bluetooth action on
the phone takes an extra

� � � � � 
 ��� �

 � 
 � � to

� ��� � � 
 ��� � � � � � � .
To summarize, when idle mode is subtracted Bluetooth costs:

Action Cost
Being discoverable 4 mW
Being discoverable and connectable 7 mW
Answering an inquiry � 1 mW
Doing inquiry 127 mW
Maintaining a connection or transferring data 557 mW / 532 mW5

Transferring data, � 180 seconds 291 mW / 331 mW5

Slack 408–720 mJ
Extra cost on connections (3.5s) 1914.5 mJ

Compared to having a conversation, using Bluetooth is quite expensive.
Especially when adding the slack and extra cost.

5.2.3 Cryptography

In this section we will test the RSA Reference Implementation, the crypto-
graphic library we used. We will test signing and verification with both 512 and
1024 bit keys, higher keys are unfortunately not available (see Section 4.2.2).

We ran 200 iterations for signature measurements, but had to run 20,000 it-
erations of verifications to 1024 bit keys and 200,000 iterations for 512 bit keys
to be able to measure the cost. All operations were done on 2048 bytes of text,
which was chosen to be big enough to cover our needs. The exact size is not
important, as the expensive function is the RSA step and not the hashing step.
The tests were run on the same key pairs. A more thorough test on an as-
sortment of key pairs would give more qualitative results, but we believe that
these tests are sufficient to give general measures for both energy cost and tim-

5 When phone initiates or sends.



5.2 The Mobile Device 73

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200  250  300  350  400  450

m
W

seconds

Min: 27.6  Max: 736.8

(a) Receiving data for 300 seconds.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0  50  100  150  200  250  300  350  400  450

m
W

seconds

Min: 27.6  Max: 757.2

(b) Sending data for 300 seconds.

Figure 5.10: The energy usage of the phone when sending and receiving data
with Bluetooth.



74 Evaluating the Design

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Min: 28.8  Max: 534.0

(a) Signing 1024 bits, 200 iterations.

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Min: 28.8  Max: 534.0

(b) Verifying 1024 bits, 20,000 iterations.

Figure 5.11: These graphs shows the energy usage during RSA signature gener-
ation and signature verification with 1024 bit keys. Please note the substantial
difference in the number of iterations done.



5.2 The Mobile Device 75

ing since the difference between different key pairs are insignificant compared
to the total cost of the operation.

The results show that that the energy cost for all operations is approxi-
mately 532 mW, the only difference being the speed. The energy usage is in
fact 24 mW higher than our previously measured busy mode cost. The reason
must be the simplicity of our busy mode program, which was just a simple
loop, compared to the RSA algorithm which somehow takes more power from
the CPU. The results are shown in Figures 5.11 on the facing page and 5.12 on
the next page, and we have calculated the cost of one iteration of each opera-
tion here:

Operation Time (s) Cost (mJ)6

Sign, 1024 0.48 241.00
Verify, 1024 0.02 10.08
Sign, 512 0.08 40.32
Verify, 512 � 0.01 0.01

The only expensive operation is signing with a 1024 bit key, the rest are
almost unnoticeable. There is a factor six speed difference between signatures
with 512 and 1024 bit keys. The same factor or slightly larger is also seen in
[15] both between 512/1024 and 1024/2048, so this should also be valid for our
implementation. So even though we are not able to validate this in practice, a
signature with a 2048 bit key will probably take at least 3 seconds on the mobile
phone. This makes 1024 bit keys the largest usable, given our time constraints.

The phone handles 1024 bit keys well; half a second should be fast enough
for our purpose. If it turns out not to be, performance might be improved
through more optimized code. It is also possible to optimize RSA with tech-
niques described in [13] and gain a factor two speed up.

5.2.4 Conclusion

One of our first assumptions was that inquiry was expensive compared to in-
quiry scan, and it certainly is. Doing inquiry scans cost 7 mW while doing
inquiry costs 127 mW. The cost of answering an inquiry was so low that it
disappeared in the GSM background noise. Doing inquiries constantly would
drain the battery 14 times faster than doing inquiry scans, so the choice of the
lock device as the inquiring party seems correct.

When it comes to the actual communication cost Bluetooth is much more
expensive than having a GSM conversation, but after 180 seconds the energy
level almost halves. We do not know what makes the energy consumption fall
that dramatically, but it seems natural to assume that it could be kept at that
level for all communication with a better design. We also experience both some
slack after all Bluetooth commands, and a 3.5 seconds slack after all Bluetooth
connections. Again, both of these could probably be optimized away.

Regarding cryptography, the device performs well. Generating a level 1 sig-
nature takes 0.5 seconds using the non-optimized code—only 7.5 times slower

6With the base cost of 29 mW subtracted.



76 Evaluating the Design

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Min: 28.8  Max: 535.2

(a) Signing 512 bits, 200 iterations.

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Min: 27.6  Max: 518.4

(b) Verifying 512 bits, 200,000 iterations.

Figure 5.12: These graphs shows the energy usage during RSA signature gen-
eration and signature verification with 512 bit keys. Please note the substantial
difference in the number of iterations done.



5.3 The Application 77

than the PC used in [15]. Extrapolating these results, an ECDSA signature
would take 0.015 seconds for level 1 and 0.030 for level 2. This would practi-
cally eliminate cryptography as a time factor for the application.

5.3 The Application

We will now analyze and measure the actual cost of our application prototype.
Based on the measurements in the previous sections we can deduce what dis-
covery and connection from the lock device should cost. We do not know how
much time the actual data transfer takes, but with the conservative assumption
that it takes less than 0.5 seconds, the cost calculation is:

Function Cost (mJ)
Answering inquiry 0
Signature (1024 bit) 241
Bluetooth connection (0.5 s) 278.5
3.5 s connection slack 1914.5
Bluetooth slack 408–720
Total 2842–3154

Around 3000 mJ for the whole application run, the most costly part being
the 3.5 seconds slack after each Bluetooth connection. The idle mode cost and
the cost of Bluetooth (40 mW all in all) should be added for the entire period to
obtain the full cost.

We measured the actual energy cost of the application for both 512 and 1024
bit keys, and the results are shown in Figure 5.13. The dominating parts are the
3.5 seconds extra connection time and the extra slack, whereas the connection
is ended before any energy consumption is measured. With the multimeter
we have access to, we are not able to measure whether the connection and sig-
nature generation for the full application matches our calculations. However,
since the rest of the calculations matches the measurements we are confident
that these are also valid.

We also timed the application 1000 times with full MobileCred packets.
These tests revealed that average inquiry time was 3.6 seconds, which is more
than one second slower than previously reported. The procedure was stable
though, the minimum inquiry time was 2.8 seconds, and the maximum was
4.4 seconds. The reason for inquiry being slower may be found in the interop-
erability between the specific Bluetooth devices we used, or the specific noise
conditions in our office environment. It is beyond our scope to investigate this
further, but the results confirm that the Bluetooth discovery process is influ-
enced by the specific equipment and environment.

Average connection time was 1.2 seconds which was a lot faster than we
expected, but it was not as stable as inquiry. Even though most connects took
around 1 second there were 23 connections that took over 10 seconds, the max-
imum being 18 seconds. It is unclear for us how this can happen. First, there
has to be a design flaw somewhere, when connection establishment can take



78 Evaluating the Design

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Avg: 102.8  Min: 28.8  Max: 614.4

(a) Application with 512 bit key.

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

Avg: 105.3  Min: 28.8  Max: 616.8

(b) Application with 1024 bit key.

Figure 5.13: These two graphs show the lock device connection to the mo-
bile device, with mobile device key being 512 and 1024 bits. The vertical lines
denote: Inquiry start, connection start, connection succeeded, and connection
closed.



5.3 The Application 79

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120

m
W

seconds

Avg: 66.5  Min: 27.6  Max: 590.4

Figure 5.14: This graph show a single connection from the lock device to the
mobile device, with the mobile device key being 1024 bits. The vertical lines
denote: Inquiry start, connection start, connection succeeded, and connection
closed.

18 seconds. Second, the standard page timeout for a Bluetooth device is 5.12
seconds and the Bluetooth device we used is also set to this (see [10, Part H,
4.7.16]). So the connection establishment should timeout after this period. The
same phenomenon was experienced in [7], but unfortunately we do not have
an explanation for this. Our conclusion is that there must be something wrong
with the connection establishment procedure.

Apart from discovery and connection establishment the rest of the appli-
cation takes 0.7 seconds on average, where 0.48 seconds are from the signa-
ture generation, so the rest of the application including communication takes
around 0.2 seconds. All in all, the total average unlocking time is 5.5 seconds,
which is shown in Figure 5.15—Bluetooth discovery and connection establish-
ment accounts for 87%. This is still almost a second faster than the expected
6.33 seconds (see Section 2.3). The reasons are the faster connection time and
the application taking 0.7 seconds instead of the assumed 1 second.

We also tested the application with MobileCred packets without the cer-
tificate and the access key, but the differences in application timing compared
to the full packets were minuscule. In order to save transfer time, we conclude
that the caching of the certificate and access key is an unnecessary complica-
tion. In general we must conclude that protocol optimizations of that kind have
limited effect on the transfer time, when the full communication and applica-
tion cost is 0.2 seconds.

Whether caching the certificate or splitting MobileCred into two packets
as suggested in Section 3.3.3 improves overall application time significantly



80 Evaluating the Design

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

S
ec

on
ds

rest
signature
connection
inquiry

Figure 5.15: The average time usage of the different parts of the application.

will depend on the lock device hardware. As we have focused on the mobile
device until now, we have not looked into that aspect. We will touch the subject
of lock device hardware in Chapter 6.

5.3.1 The Infamous 3.5 Seconds

Late in the process it occurred to us what might cause the 3.5 extra seconds
on each Bluetooth connection to the phone: The connection is not closed even
though the Bluetooth stack reports it.

The explanation is as follows: to close a L2CAP connection, on either Sym-
bian OS or Linux, we use a high-level close function that informs the communi-
cating party that the connection is being closed and closes the connection. This
works fine and the L2CAP-connection is closed immediately on both sides.
The problem is that one of the Bluetooth stacks keeps the underlying ACL-
connection alive for a period after the L2CAP connection is closed. This time-
out causes the extra 3.5 seconds. We do not know for sure which of the proto-
col stacks cause this, but bringing down the Bluetooth interface completely in
Affix directly after closing the connection, makes the power consumption fall
immediately. Hence our guess is that Affix is the culprit, which is confirmed
by at least one other person on the Affix developers mailing-list7.

We did not have time to redo all experiments, but our measurements show-

7http://lists.sourceforge.net/lists/listinfo/affix-devel.

http://lists.sourceforge.net/lists/listinfo/affix-devel


5.4 Conclusion 81

ed that bringing down the Affix interface totally eliminated the 3.5 seconds
after each connection. The 17–30 seconds general Bluetooth slack remained
though. We conclude that the problem is in the Affix stack, and can ignore the
3.5 seconds in our cost measurements.

The rationale for the ACL-connection timeout in the Affix stack may be
an attempt to optimize multiple connection attempts. The establishment of
an L2CAP connection when the ACL-connection is already in place is done
with no noticeable delay, the devices are already connected and synchronized.
So any program that needs to create two subsequent connections to the same
device saves 1.3 seconds on average for the second connection establishment.
This is frequently needed as the first connection is used to query the SDP-
database, and the second is to the actual service.

To our knowledge there is no indication of such an optimization in the stan-
dard, and we do not know whether the same phenomenon is found in for ex-
ample the BlueZ stack.

5.4 Conclusion

In this chapter we set up a test environment that let us construct a cost model
for the functionalities of the P800 mobile phone, and test the prototype we
developed.

The tests confirmed our assumptions about the time and energy perfor-
mance of Bluetooth and showed that our prototype implementation performed
better than expected and allows a door to be unlocked in 5.5 seconds. Assum-
ing that the application has full control of the underlying Bluetooth stack, the
3.5 seconds extra connection time can be avoided and the program cost is 241
mJ for the signature and

� �	��� ����� � ��� �
� ����� 
 � � for the connection, totaling

352.4 mJ. On top of that comes the Bluetooth slack, so all in all the maximal cost
is only 1072.4 mJ. This is the same cost as holding the pointer still at the screen
for 2 seconds or having a phone conversation for 4 seconds. Or put differently,
with a battery of 12960 J and the phone in normal mode with Bluetooth on
(using 40 mW on average) it can do more than 10000 consecutive unlockings.

These figures allows the application to run on the mobile phone with little
influence on the lifetime of the battery, and allows the range of the lock device
to be two meters or less as we needed. All in all the application fulfills the goals
set.

There are still issues that need to be tested. Even though the application
performs well using RSA, we still believe that ECDSA is the optimal solution
for the scenario and it should be tested on the mobile phone hardware. More-
over it would be interesting to test the shared secret optimization and compare
it to the figures found during these tests. Testing the application in a real-life
scenario with multiple users and doors is also a topic for further research.



82 Evaluating the Design



CHAPTER 6

The Optimal Device

Everything that can be invented has been invented.
– Charles H. Duell, Commissioner, U.S. Office of Patents, 1899

In the previous chapters we have designed a system that fulfills its goals
in the given context and with the available hardware. However, to make the
system optimal there are two hardware-based issues that could be improved:

1. Discovery and connection establishment speed

2. Context awareness

The first issue concerns Bluetooth and the second the generic mobile phone
hardware. Based on our experiences in previous chapters and looking beyond
these two factors we envision the optimal mobile device to be:

A small and light device that is aware of when it is in front of a door
and exactly which door it is. It is also aware of whether the user
carrying it wants to open a door or not. Discovery and connection
time is less than a second and its energy resources are virtually un-
limited. It also has fast cryptography support, is tamper-resistant,
and has room for hundreds of keys.

With this device we believe the system would be optimal, although it is
beyond the capabilities of a standard mobile phone equipped with Bluetooth.
As we see it, it could either be done with a custom device or by augmenting
the mobile phone. These approaches are discussed in the following.

83



84 The Optimal Device

6.1 Augmenting the Mobile Phone

The first problem for the system is the discovery and connection establishment
of Bluetooth. Even with careful analysis of how to perform this as fast as pos-
sible, it still consumes 87% of the total application time of 5.5 seconds (see
Figure 5.15 on page 80). Hence Bluetooth may not be the correct technology
for the optimal device.

But instead of altogether replacing Bluetooth it may be beneficial to focus on
the speed of the discovery mechanism. Bluetooth inquiry procedure takes on
average 3.6 seconds, while connection establishment on average takes 1.3 sec-
onds. We propose to exchange the discovery procedure with a faster solution
but still use Bluetooth for the communication. The purpose of the discovery
mechanism is to detect the presence of another device and obtain its Bluetooth
address1, and in our scenario this can be achieved faster without using Blue-
tooth.

Hall et al. [30] proposes a scheme they call RF Rendez-Blue that incorporates
a RFID-based discovery mechanism for Bluetooth. Radio frequency identifica-
tion [35] (RFID) is used for identification of objects: goods, locations, animals,
people, etc. RFID are is not standardized, but the basic idea is that objects are
equipped with a RF tag which contains information, that can be read by an
electronic reader from a short distance. RF tags are small, cheap, and can be
designed such that the power needed to operate them comes from the reader
(passive tags, as opposed to active tags). The idea in RF Rendez-Blue is to install
a passive RF tag on devices that needs to be discoverable, containing the Blue-
tooth device address. Discovery is then done by scanning for RF tags which
is very fast compared to Bluetooth inquiry times, and then connecting to the
Bluetooth address obtained from the RF tag. Discovery times for RF tags are
not mentioned directly, but their graphs assume zero seconds. This is of course
not entirely correct, but to our knowledge it only takes a couple of millisec-
onds to discover and read information from a RF tag. With RF Rendez-Blue the
discovery time is in practice eliminated.

In our scenario we can equip each mobile phone with a RF tag and the lock
device with a RFID reader. RF tags have many different form factors, even
like adhesive stickers measuring only


 � 
 � � � � � � (see Figure 6.1 on the next
page) with room for minimum 73 bits (a Bluetooth address is 48 bits). Such
a tag can be placed inside the mobile phone without any modifications to the
hardware (f.x. next to the battery) and being passive it requires no power from
the mobile device’s power source. This only needs to be done once, and can
also be used by other applications. We do not have any information about
the price, but as RFID is expected to be incorporated into clothes and normal
grocery products the cost will eventually be low. Moreover, the security of
the system is not affected as the RF tag functions like the Bluetooth inquiry
procedure, only supplying the Bluetooth address. It does make a relay attack
more difficult as the attackers also need a custom RF tag to be discovered by
the lock device.

1Inquiry also exchanges other information but the address is all that is needed to establish a
connection.



6.2 Building a Custom Device 85

(a) Single. (b) Roll.

Figure 6.1: Example of a RF tag, available on peel-and-stick rolls with each tag
measuring


 � 
 � � � �
cm.

(from: http://www.ie-oem.com/rfid/rfid-tags-folio.htm)

Incorporating this into our system would enable our prototype application
time to be decreased to only 1.9 seconds on average. The RFID reader on the
lock device can be decreased to only 40–50 centimeters, and the door could still
be unlocked in less than 2 seconds. Moreover it would save the inquiry scan
cost on the mobile device—although minimal on the P800, it may be different
on other hardware.

We see RFID as an ideal solution for decreasing the application time in our
scenario, without modifications to the mobile phone hardware and with lim-
ited cost. There are still some issues that can be handled by a custom device
but RFID enables a mobile phone to work very well as a mobile device.

6.2 Building a Custom Device

Although we believe the mobile phone is a good mobile device, a custom de-
signed device may still have advantages over a mobile phone. The mobile
phone as a mobile device has the following issues:

� It may be expensive

� It may be too big

� It has limited energy resources

First, the user may not have a mobile phone and may not be interested in
having one. To obtain a mobile phone only to be able to unlock doors may be
too expensive. Second, depending on the mobile phone hardware, a mobile

http://www.ie-oem.com/rfid/rfid-tags-folio.htm


86 The Optimal Device

phone may not be practical to carry around because of its size. Third, the mo-
bile phone is a generic device used for other purposes which also takes valu-
able energy. This could create a situation where the user cannot unlock a door
because the battery was drained by having a phone conversation. A custom
device could amend these issues. In this section we will briefly explain some
of the approaches that could be taken.

A custom device could also use a more suitable communication technol-
ogy, as Bluetooth may be too slow or expensive to incorporate in devices. A
technology which may in the future be more suited is ZigBee2. ZigBee is pre-
sented as a complementary technology to Bluetooth, especially for small and
hardware-constrained devices that are incapable of using Bluetooth. It sup-
ports 20–250 Kbps, range from 10–75 meters, and is optimized for slave power
consumption—similar to Bluetooth except for the lower maximum transfer
rate. The mission is different, as ZigBee promises to work on devices with
more than two years of lifetime on a normal battery (like the ones used in a
Walkmans, etc.). It furthermore promises discovery times around 30 ms which
will make it more ideal in our scenario. The three lowest layers in the ZigBee
protocol stack is an IEEE standard, 802.15.43. This standard has recently been
approved (May 2003), but the rest of ZigBee is still a work-in-progress. Hence
it will take some time before ZigBee can be used, but when building a custom
device ZigBee seems interesting.

The processor on the device could either be a general purpose processor
fast enough to support cryptography or a low-performance low-cost processor
with additional hardware cryptography support. The general purpose proces-
sor has to be fast enough to handle software-based cryptography and use as
little energy as possible, it is out of our scope to give a general recommenda-
tion for this. The other approach is to choose a low-performance processor
and equip the device with hardware cryptography support. An example is the
M-Systems SuperMap RSA CoProcessor4 that, contrary to its name, is a generic
cryptographic co-processor that supports both RSA and ECDSA. The specifi-
cations lists a maximum of 190ms for 1024-bit operations. The product can
be purchased as Intellectual Property (IP) and incorporated directly in the de-
vice. Other similar products are produced by f.x. Analog Devices5 and Na-
tional Semiconductor Corporation6. Another approach is to use general pur-
pose cryptographic smart-cards. Handschuh and Paillier [31] gives a review
of the available cards in 1999, and all smart-cards perform level 1 operations
in less than 0.5 seconds. There are three major advantages to incorporating
a smart-card reader in the mobile device and use exchangeable smart-cards.
First, they are mass-produced which decreases the price. Second, some are
tamper-resistant, incorporating features described in Section 3.3.6 to lessen the
damage on theft. Third, users never have to handle private keys, as they can
be installed by the manufacturer or the external authority.

2http://www.zigbee.org
3http://www.ieee802.org/15/pub/TG4.html.
4http://www.m-sys.com/.
5http://www.analog.com/.
6http://www.national.com/.

http://www.zigbee.org
http://www.ieee802.org/15/pub/TG4.html
http://www.m-sys.com/
http://www.analog.com/
http://www.national.com/


6.2 Building a Custom Device 87

Regarding the power for the device, the energy source should either be
abundant or easily replenished. As size is an important issue, making sure
there is enough power is a question of economizing the power there is. For
this, Hall et al. [30] further enhances the use of RF Rendez-Blue by integrating
the RF tag with the rest of the hardware, and proposes to have the device en-
ter sleep mode until awaken by an RFID query (a device rendezvous, see [76]).
The authors note that depending on the hardware it can take some time for
the Bluetooth radio to be ready after sleep mode. With their specific hard-
ware it takes 1.28 seconds but results in only 1 � A power consumption during
sleep mode. Combining this with an accelerometer in the custom device, will
also avoid unnecessary power usage when the user is not moving (see Sec-
tion 2.2.3). With these two features incorporated in a custom device, energy
will only be used when interacting with a lock device. Still, the battery can
be drained though and we propose to use standard type batteries that can be
bought in a normal grocery store to enable easy replenishment. This is not
our field of expertise, but we imagine that it may be possible to use inductive
power in the custom device. Not as the main power source, but if the batteries
are drained it could generate enough power to enable one unlocking.

The last issue is how the device obtains the keys. When the mobile de-
vice is a mobile phone there are communication possibilities with the external
authority through SMS, GSM, etc. The custom device will also need such a
communication path to the external authority. This can be done through Blue-
tooth (or ZigBee), using a device installed at a suitable location (a base station)
also equipped with Bluetooth and with a communication path to the external
authority. This allows the user to retrieve the latest keys using the base station.
The base station could be any desktop PC equipped with Bluetooth and the
necessary software, allowing the user to use any existing and available PC to
retrieve keys from. However, not many desktop PCs are equipped with Blue-
tooth so the custom device could pose as a generic storage medium through
the use of USB or acting like a Sony Memory Stick7 or a similar technology.

Figure 6.2: This picture shows the Frontel MP301 MP3 player, measuring

 � � �

� � � � ��� 

cm and weighing 37 grams.

(from: http://frontelinc.com.tw/product/mp200.htm)

7http://www.ita.sel.sony.com/memorystick/

http://frontelinc.com.tw/product/mp200.htm
http://www.ita.sel.sony.com/memorystick/


88 The Optimal Device

Looking for examples of existing devices that are portable, has a small form
factor, processing power, memory, etc., we find the combined USB-drive/MP3-
players. A good example of these types of devices is shown in Figure 6.2 on
the preceding page. This device measures


 � � � � �	� � ��� 

cm, weighs 37 grams,

has 64 Mbytes of storage, and is capable of playing music for 15 hours on a
standard 1.5 volts AAA-type battery—we have seen the device being sold for
$98.95. Removing most of the storage and equipping the device with Blue-
tooth, or ZigBee, possibly hardware cryptography support, and other of the
above features may be possible at the same price depending on the amount
of devices manufactured. The USB-support enables transfer of keys to the de-
vice. The form factor is also good, and when the device can play music for that
long on a standard battery, it should be capable of unlocking a high number of
doors.

We are not engineers, nor product designers, so we will not venture further
into this area. It is a topic for further research and there seems to be plenty of
possibilities for creating a cheap and well-functioning custom mobile device
for our scenario.

6.3 Conclusion

In this chapter we have investigated how we envision an optimal device for
our scenario, and have given two approaches to make this. In the first ap-
proach we propose to augment an existing mobile phone with a RF tag, in
practice eliminating the discovery time in Bluetooth making the total average
application time decrease to 1.9 seconds. In the second approach we discuss
using other communication technologies, and discuss various techniques that
can be incorporated into a custom built mobile device.

We believe that the mobile phone will become a generic mobile platform
finding many different usages. With the RF tag the application time is almost
negligible, and becomes an even better candidate for the mobile device. How-
ever, we do not see the approaches as being complementary, as the most suited
device depends on the given scenario and the given user.



CHAPTER 7

Conclusion

In this thesis we have designed a system that allows a Bluetooth-enabled mo-
bile device to unlock a door without user interaction. The design fulfills the
requirements of supporting autonomous lock devices, easing key distribution
compared to physical keys, having minimal requirements for the hardware,
and supporting personalized keys.

To accomplish this we have designed a fully automated discovery proce-
dure using Bluetooth and a secure protocol. To demonstrate and evaluate the
design, a prototype using a readily available mobile phone was developed. The
evaluation shows that the design consumes minimal power from the hardware
and is able to unlock a door on five seconds in average. The prototype fulfills
the goals set, and demonstrates that it is possible to use an existing mobile
phone as a door-unlocking device.

The system is primarily designed for mail or goods delivery companies,
but throughout the thesis, suggestions have been given on how to extend the
system to a wider usage. We have also given suggestions on how a simple
augmentation of the mobile phone results in a dramatic decrease in the time
needed to unlock a door, and suggestions for the design of a custom mobile
device.

7.1 Future Work

The following are interesting areas for further research:

� Mobile device to mobile device communication

As sketched out in Section 3.7.2, extending the scenario to incorporate
mobile device to mobile device communication, could create new and in-
teresting usage scenarios, for example allowing a mobile device to create
access keys and transmit it directly to the intended user’s mobile device.

� Key distribution

89



90 Conclusion

Investigating the issues of key distribution between all three entities in
the system. As an example, a lock device could be used as a central distri-
bution point, obtaining keys from mobile devices and distributing them
to other mobile devices. Keys could also be disseminated more generally
between both lock devices and mobile devices using the approach in [7].

� Broadening unlocking

Instead of unlocking a door, the system could be used to “unlock” other
items: a refreshment from a vending machine, a seat in a theater, a park-
ing area, etc.

� Further implementation of the system

Enhancing the prototype to work on other types of mobile phones, pos-
sibly using Java with Bluetooth support [51] for platform independence.
ECDSA and the shared secret scheme should also be investigated.

� Experimenting in a real-life scenario

Testing the system in a real-life scenario with multiple mobile devices and
one or more doors to reveal eventual practical problems with the system.

� Context awareness

The concept of context awareness has only briefly been touched in this
thesis. We believe that the use of context could be developed to further
decrease energy consumption and increase usability.



Bibliography

[1] Martı́n Abadi and Roger Needham. Prudent engineering practice for
cryptographic protocols. IEEE Transactions on Software Engineering, 1996.

[2] Smart Card Allicance. Contactless technology for secure physical access:
Technology and standards choices. Technical report, Smart Card Alliance,
2002. URL http://www.smartcardalliance.org/.

[3] R. Anderson and M. Kuhn. Tamper Resistance – a Cautionary Note. In
Proceedings of the Second Usenix Workshop on Electronic Commerce, 1996.

[4] Ross Anderson. Security Engineering. Wiley Computer Publishing, 2001.

[5] Ross Anderson and Roger Needham. Robustness principles for public key
protocols. In International Conference on Advances in Cryptology (CRYPTO
95), 1995.

[6] Daniel J. Barrett and Richard Silverman. SSH, The Secure Shell: The Defini-
tive Guide. O’Reilly & Associate, 1st edition, 2001.

[7] Allan Beaufour, Martin Leopold, and Philippe Bonnet. Smart-tag based
data dissemination. In First ACM International Workshop on Wireless Sensor
Networks and Applications WSNA02, June 2002.

[8] Daniel J. Bernstein. UTC, TAI, and UNIX time, 2001. URL
http://cr.yp.to/proto/utctai.html.

[9] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. Keromytis. RFC2704 – The
KeyNote trust-management system version 2. Technical report, RFC Edi-
tor, September 1999.

[10] Specification of the Bluetooth System – Core. Bluetooth SIG, 1.1 edition,
February 2001.

[11] Specification of the Bluetooth System – Profiles. Bluetooth SIG, 1.1 edition,
February 2001.

[12] Christian Boesgaard and Allan Beaufour Larsen. Authentication infras-
tructure for wireless key-door lock system. Classified, 2003.

[13] Dan Boneh and Honav Shacham. Fast variants of RSA. RSA CryptoBytes,
5(1), 2002.

91

http://www.smartcardalliance.org/
http://cr.yp.to/proto/utctai.html


92 Bibliography

[14] Jennifer Bray and Charles F. Sturman. Bluetooth 1.1 – Connect Without Ca-
bles. Prentice Hall PTR, 2. edition, 2002.

[15] Michael Brown, Donny Cheung, Darrel Hankerson, Julio Lopez Hernan-
dez, Michael Kirkup, and Alfred Menezes. PGP in constrained wireless
devices. In Security Symposium. USENIX, 2000.

[16] Lars Cederquist. Facts about positioning services, 2002. URL
http://www.ericsson.com/mobilityworld/. Ericsson Mobility
World.

[17] T. Dierks and C. Allen. RFC2246 – the TLS protocol version 1.0. Technical
report, RFC Editor, Januar 1999.

[18] Kevin Dixon. Symbian OS version 7.0s – functional description. Technical
report, Symbian Ltd., 2003. Revision 2.0.

[19] Johnathan B. Postel (ed.). RFC793 – transmission control protocol. Tech-
nical report, RFC Editor, September 1981.

[20] Taher ElGamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, IT-31(4),
1985.

[21] Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M.
Thomas, and Tatu Ylonen. Simple public key certificate. Internet Draft,
January 2000.

[22] Sony Ericsson. P800/P802 white paper. Technical report, Sony Ericsson,
2003.

[23] ETSI. Alphabets and language-specific information. Technical report, Eu-
ropean Telecommunications Standards Institute, 1998. ETSI TS 100 900
V7.2.0.

[24] ETSI. Technical realisation of the short message service (SMS). Technical
report, European Telecommunications Standards Institute, 1998. ETSI TS
100 901 V7.2.0.

[25] Simon L. Garfinkel. PGP: Pretty Good Privacy. O’Reilly & Associates, Inc.,
1994.

[26] H.W. Gellersen, A. Schmidt, and M. Beigl. Multi-sensor context-
awareness in mobile devices and smart artefacts. Mobile Networks and
Applications, 2001.

[27] Peter Gutmann. cryptlib security toolkit. URL
http://www.cs.auckland.ac.nz/˜pgut001/cryptlib/.

[28] Peter Gutmann. Lessons learned in implementing and deploying crypto
software. In Security ’02. USENIX, 2002.

[29] Peter Gutmann. Encryption and security tutorial, 2003. URL
http://www.cs.auckland.ac.nz/˜pgut001/tutorial/.

http://www.ericsson.com/mobilityworld/
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/
http://www.cs.auckland.ac.nz/~pgut001/tutorial/


7.1 93

[30] Eric S. Hall, David K. Vawdrey, and Charles D. Knutson. RF Rendez-Blue:
Reducing power and inquiry costs in Bluetooth-enabled mobile systems.
In IEEE International Conference on Computer Communications and Networks
(ICCCN), 2002.

[31] Helena Handschuh and Pascal Paillier. Smart card crypto-coprocessors
for public-key cryptography. RSA CryptoBytes, 4(1), 1998.

[32] Gunnar Heine. GSM Networks: Protocols, Terminology and Implementation.
Artech House, 1999.

[33] Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, and James Collins.
Global Positioning System: Theory and Practice. Springer-Verlag, 5th edition,
2000.

[34] R. Housley, W. Polk, W. Ford, and D. Solo. RFC3280 – internet x.509 public
key infrastructure certificate and certificate revocation list (CRL) profile.
Technical report, RFC Editor, April 2002.

[35] AIM Inc. Radio frequency identification – RFID: A basic primer. White
Paper, 1999.

[36] ITU-T. Information technology - ASN.1 encoding rules: Specification of
basic encoding rules (BER), canonical encoding rules (CER) and distin-
guished encoding rules (DER). Recommendation, ITU-T, 2002.

[37] Markus Jakobsson and Susanne Wetzel. Security weaknesses in bluetooth.
Lecture Notes in Computer Science, 2001.

[38] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: Mobile
networking for ”smart dust”. In International Conference on Mobile Comput-
ing and Networking (MOBICOM), pages 271–278, 1999.

[39] Dmitry Kasatkin. Affix Bluetooth protocol stack for Linux. URL
http://affix.sourceforge.net.

[40] O. Kasten and M. Langheinrich. First experiences with bluetooth in the
smart-its distributed sensor network. In Workshop on Ubiquitous Computing
and Communications, PACT 2001, 2001.

[41] John Kelsey, Bruce Schneier, and David Wagner. Key schedule weaknesses
in SAFER+. In The Second Advanced Encryption Standard Candidate Confer-
ence, 1999.

[42] H. Krawczyk, M. Bellare, and R. Canetti. RFC2104 – HMAC: Keyed-
hashing for message authentication. Technical report, RFC Editor, Febru-
ary 1997.

[43] Martin Leopold. Evaluation of bluetooth communication: Simulation and
experiments. Technical Report 02/03, Institute of Computer Science, Uni-
versity of Copenhagen, 2002.

[44] J. Linn. RFC1421 – privacy enhancement for internet electronic mail: Part
i: Message encryption and authentication procedures. Technical report,
RFC Editor, February 1993.

http://affix.sourceforge.net


94 Bibliography

[45] Sue Long, Rob Kooper, Gregory D. Abowd, and Christopher G. Atkeson.
Rapid prototyping of mobile context-aware applications: The cyberguide
case study. In Mobile Computing and Networking, 1996.

[46] J. Massey, G. Khachatrian, and M. Kuregian. Nomination of SAFER+ as
candidate algorithm for the advanced encryption standard AES. Technical
report, National Institute of Standards and Technology, 1998.

[47] Pat Megowan, Dave Suvak, and Doug Kogan. IrDA Object Exchange Pro-
tocol OBEX. Infrared Data Association, 1.3 edition, January 2003.

[48] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbook
of applied cryptography. CRC Press, 1997.

[49] Microchip. KEELOQ authentication products, 2002. URL
http://www.microchip.com/1010/pline/security/index.htm.

[50] David L. Mills. RFC1305 – network time protocol (version 3). Technical
report, RFC Editor, March 1992.

[51] Java APIs for Bluetooth Wireless Technology (JSR-82) – Specification. Motorola,
version 1.0a edition, April 2003.

[52] Srilekha S. Mudumbai, Mary R. Thompson, Gary Hoo, Abdeliah Essiari,
Keith Jackson, and William Johnston. Akenti – a distributed access control
system. In Supercomputing, 1998.

[53] NIST. Secure hash standard. Technical Report FIPS 180-1, National Insti-
tute of Standards and Technology, 1995.

[54] NIST. Digital sinature standard (DSS). Technical Report fips186-2, Na-
tional Institute of Standards and Technology, 2000.

[55] NIST. Advanced encryption statndard AES. Technical Report fips197,
National Institute of Standards and Technology, 2001.

[56] NIST. Recommendation for key management. part 1: Gen-
eral guideline. Special Publication 800-57, National In-
stitute of Standards and Technology, January 2003. URL
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html.
Draft.

[57] The Mozilla Organization. Network security services (NSS), 2003. URL
http://www.mozilla.org/projects/security/pki/nss/.

[58] Adrian Perrig, Robert Szewczyk, Victor Wen, David Culler, and J. D. Ty-
gar. Spins: security protocols for sensor networks. In Proceedings of the
seventh annual international conference on Mobile computing and networking,
2001.

[59] Jonathan B. Postel. RFC821 – simple mail transport protocol. Technical
report, RFC Editor, August 1982.

[60] BlueZ project. BlueZ – official Linux bluetooth protocol stack. URL
http://bluez.sourceforge.net/.

http://www.microchip.com/1010/pline/security/index.htm
http://csrc.nist.gov/CryptoToolkit/tkkeymgmt.html
http://www.mozilla.org/projects/security/pki/nss/
http://bluez.sourceforge.net/


7.1 95

[61] The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS,
2003. URL http://www.openssl.org/.

[62] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digi-
tal signatures and public-key cryptosystems. Communications of the ACM,
1978.

[63] B. Schiele and S. Antifakos. Beyond position awareness. In Proceedings of
the Workshop on Location Modeling, UBICOMP 2001, 2001.

[64] Albrecht Schmidt. Ubiquitous Computing – Computing in Context. PhD
thesis, Computing Department, Lancaster University, UK, 2002.

[65] Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is more
to context than location. Computers and Graphics, 1999.

[66] Bruce Schneier. Applied Cryptography. John Wiley & Sons Ltd., 1996.

[67] Bruce Schneier. Secrets & Lies. John Wiley & Sons Ltd., 2000.

[68] Adi Shamir and Eran Tromer. Factoring large numbers with the TWIRL
device. URL http://psifertex.com/download/twirl.pdf. Pre-
liminary Draft, January 2003.

[69] Bluetooth SIG. Bluetooth assigned numbers. URL
https://www.bluetooth.org/.

[70] Robert D. Silverman. A cost-based security analysis of symmetric and
asymmetric key lengths. Technical report, RSA Laboratories, 2001. URL
http://www.rsasecurity.com/rsalabs/bulletins/.

[71] R. Srinivasan. RFC1833 – binding protocols for ONC RPC version 2. Tech-
nical report, RFC Editor, August 1995.

[72] William Stallings. Cryptography and Network Security. Pearson Education,
3rd edition, 2003.

[73] UIQ SDK for Symbian OS v7.0. Symbian Ltd., 2003.

[74] Microchip Technologies. Remote keyless entry and convenience
center reference design with LIN bus interface, 2002. URL
http://www.microchip.com/.

[75] R. Thayer, N.Doraswami, and R. Glenn. RFC2411 –IP security: Document
roadmap. Technical report, RFC Editor, November 1998.

[76] T. Todd, F. Bennett, and A. Jones. Low power rendezvous in embedded
wireless networks. In Proceedings of 1st Workshop on Mobile Ad Hoc Net-
working and Computing MobiHOC, 2000.

[77] R. Want, B. N. Schilit, N. I. Adams, R. Gold, K. Petersen, D. Goldberg, J. R.
Ellis, and M. Weiser. An overview of the PARCTAB ubiquitous computing
experiment. IEEE Personal Communications, 1995.

[78] Roy Want. New horizons for mobile comput-
ing. Keynote speech at PerCom 2003, 2003. URL
http://www.percom.org/percom_2003/slides/.

http://www.openssl.org/
http://psifertex.com/download/twirl.pdf
https://www.bluetooth.org/
http://www.rsasecurity.com/rsalabs/bulletins/
http://www.microchip.com/
http://www.percom.org/percom_2003/slides/


96 Bibliography



APPENDIX A

Protocol Description

The protocol consists of three different packet types:

ID Name
1 LockGreet
2 MobileCred
3 Message

All packets share a common header where each packet is identified by ID.
We start by describing th data types, the common header and the structure for
the access key, and then the three packets types.

Data Types

Integers Integers are unsigned if nothing else is stated, and multi-byte integers
are transfered in common network byte order (big-endian).

Booleans 1-byte integer. False when contents �
�
.

Variable Sized Data The first two bytes of every variable sized field is the
length of the field, excluding the two bytes themselves.

Time stamps 4-byte integer, seconds since January 1, 1970, 00:00:00 GMT (POSIX
time1).

1There are small errors in the POSIX standard time (as noted in [8]), but with the precision
needed in our context it does not matter.

97



98 Protocol Description

Access Key

Field Description Size (B)
Doors List of door identities 2–
Identities List of mobile device identities 2–
TS start Not valid before this 4
TS end Not valid after this 4
Creator Identity of creator 1–

Doors and Identities are both lists of variable sized data. The end of
the list is denoted by 00.

Common Header

Field Description Size (B)
Version Protocol Version 1
Type Unique packet type identifier 1
Size Size of the packet 2

The Size is the size of the packet (excluding the header) in bytes.

LockGreet Packet

Field Description Size (B)
ID Unique ID of the lock 1– ?
Nonce Unique value 20
SymKey Allow shared key (boolean) 1
CachedCert Available certificate for mobile 20
CachedKey Available access key for mobile 20

CachedCert and CachedKey are a SHA-1 of a cached identity certificate
or access key, and all necessary certificates if multiple authorities are used.



Appendix A 99

MobileCred Packet

Field Description Size (B)
SymKey Shared key used (boolean) 1
LockID Identity of lock device 1– ?
MobID Identity of mobile device 1– ?
Nonce Nonce sent in LockGreet 20
Cert (optional) Identity certificate 0– ?
Key (optional) Access key 0– ?
TS Current time on mobile device 4
Signature Signature for packet 1– ?

The certificate and/or key is only sent if the lock device does not have the
information already (indicated via LockGreet, A). The signature is generated
on a byte-wise concatenation of the entire packet except the Signature field
itself, the same way as done in f.x. TLS (see [17, Section 4.1]).

Message Packet

Field Description Size (B)
TS Time stamp of last usage of mobile device key pair 4
Num Message number 1
S (optional) Encrypted shared secret 0 - ?

Num is interpreted as a signed integer, where values below zero is error
messages and values above zero is non-error messages. The special case where
Num = 0 is not used. S may only be used by the lock device and only when
Num = 1. The messages sent by the lock device are:

Num Description
1 Authentication Successful

-1 Authentication failed, access key
-2 Authentication failed, certificate
-3 Authentication failed, signature

And the messages sent by the mobile device are:

Num Description
-1 No Key Available
-2 Currently Not Interested in Unlocking



100 Protocol Description



APPENDIX B

Developing for the Symbian
OS using Linux

In this appendix we give a short description of how we have developed for the
Symbian OS using Linux. We start by describing the installation and configu-
ration of the software development kit, then how to transfer files and applica-
tions to the mobile phone, and finally how to debug the applications.

The Software Development Kit

To program for the Symbian OS you will need to get the Windows-based Sym-
bian OS Software Development Kit1 (SDK) for the specific phone you are devel-
oping for2, which can be downloaded freely from the mobile phone companies
homepages. The SDK consists of a tool-chain that allows you to build for vari-
ous platforms with the same source files. The supported targets are the mobile
phone and the windows-based emulator. The actual compilation is done with
GNU GCC for the mobile phone, and a Windows compiler (Microsoft Visual
C++ or Metrowerks CodeWarrior) for the emulator.

Since our normal working environment is Linux, we chose to find a way to
make the SDK work with this. There are two ways to make it work: The GnuPoc
project3 and sdk2unix4. They are both a collection of patches and utilities that
are applied to the official SDK, to make it work with Linux. They both consist
of patches to solve case- and path-problems, but take two different approaches
to the actual build process. GnuPoc makes the SDK work the same way with
Linux as it does with Windows, using Symbian’s own build-tools. sdk2unix

1http://www.symbian.com/developer/SDKs.html
2Which for the moment has a one-to-one mapping to Symbian OS versions: Nokia 9210 = Sym-

bian OS 6.0, Nokia 7650 = Symbian OS 6.1, and Sony Ericsson P800/802 = Symbian OS 7.0).
3http://gnupoc.sourceforge.net.
4In fact this project doesn’t seem to have a name, it is just a collection of tools

that maintained by Rudolf Knig. But for simplicity we named it sdk2unix. See
http://www.koeniglich.de/symbian_sdk_7.0_on_linux.html.

101

http://www.symbian.com/developer/SDKs.html
http://gnupoc.sourceforge.net
http://www.koeniglich.de/symbian_sdk_7.0_on_linux.html


102 Developing for the Symbian OS using Linux

makes the SDK behave more like a traditional Unix tool-chain, by supplying a
set of GNU Make-rules that allows usage of standard Makefiles.

We have successfully used both GnuPoc5 and sdk2unix with the Nokia
7650, but have only managed to get sdk2unix to work with the Sony Ericsson
P800. For that reason we have chosen to use sdk2unix, which is also easiest for
us to use at it uses traditional Unix toolchain. Here is an example of a typical
Makefile for sdk2unix:

ARCH=p800
EPOC=/usr/local/symbian/7.0

LIBS= $(EPOCTRGREL)/euser.lib \
$(EPOCTRGREL)/apparc.lib \
$(EPOCTRGREL)/cone.lib \
$(EPOCTRGREL)/eikcore.lib \
$(EPOCTRGREL)/eikcoctl.lib \

NAME=btecho
OBJECTS=btecho.o btechoapplication.o messageserver.o \

btechoappview.o btechodocument.o btechoappui.o
TARGET=$(NAME).app
MAJOR=1
MINOR=0
PKGVERS=$(MAJOR),$(MINOR)

PKGFILES=$(NAME).app $(NAME).rsc

U1 = 1000007a
U2 = 100039ce
U3 = 10BE5C34

CFLAGS = -O -I. -I$(EPOC)/include/libc -DUID3=0x$(U3) \
-DDEBUG -DARCH_${ARCH}

CPPFLAGS += -DARCH_${ARCH}

all:$(PKGFILES) $(NAME).sis
mv $(NAME).sis $(NAME)-$(MAJOR).$(MINOR)-$(ARCH).sis

$(TARGET):$(OBJECTS)

$(NAME).o: $(NAME).rsc $(NAME).h

clean:
rm -f $(GENERATED)

File Transfer

The actual transfer of files from the host can be done in various ways, where we
successfully have tried two: Transfer via Bluetooth with the OBEX ObjectPush

5It did require quite a lot of patching though, but the package should be updated with my
patches now.



Appendix B 103

protocol or via copying directly to the filesystem on the phone. OBEX doesn’t
seem to work very well with the official Linux Bluetooth stack BlueZ6, so we
changed to the Affix7 stack which has worked perfectly for us. With the Affix
stack installed it works as simply as this:

$ btctl push 00:0a:d9:17:6f:0f btecho-1.0-p800.sis
Transfer complete.
5474 bytes sent in 1.0 secs (5474.00 B/s)

The phone then receives the file, shows a message about the transfer that let
one install it or store it in the Inbox.

Another approach is to use p3nfs8. which consists of software for both
Linux, Sony Ericsson P800 and Nokia 9210/7650. It makes it possible to mount
the filesystem of the phone directly with Linux, which makes it possible to
copy files directly to the phone. This saves a lot of time, since installed with
the above needs a lot of manual input on the phone.

Debugging

The SDK and Symbian web-site advertises on-target debugging using the GNU
Debugger GDB9 or MetroWerks MetroTRK10. There is even a patched version
of the GDB source code available, but the P800 does not support GDB. And for
MetroWerks the following is reported:

MW Ron <mwron@metrowerks.com>
Newsgroups: discussion.epoc.C++
Date: Tue, 18 Mar 2003 16:58:44 -0500

On-device debugging support for the P800 is currently being finalized by
Sony Ericsson, who have a working version in their lab. We do not have
control over when this comes to market. Once their final testing is
complete, you will need to have your phone re-flashed, by Sony Ericsson,
in order to use this functionality. As soon as this is available, we
will notify our customers via our website. You can expect that other
Symbian devices, from other manufacturers, will include MetroTRK
functionality in late 2003 and throughout 2004 to support on-device
debugging.

At the time of writing, we have not found more specific informations about
the status of debugging support. This means that there is no proper debug-
ging support available, and we had to resort to instrumenting our code with
statements that printed debug information to some device.

We experimented with three different approaches for the output device.
The first simple one was to write debugging to a file, and read the file via an

6http://bluez.sf.net/
7http://affix.sf.net/
8http://www.koeniglich.de/p3nfs.html
9http://www.gnu.org/software/gdb/

10http://www.metrowerks.com/

http://bluez.sf.net/
http://affix.sf.net/
http://www.koeniglich.de/p3nfs.html
http://www.gnu.org/software/gdb/
http://www.metrowerks.com/


104 Developing for the Symbian OS using Linux

application on the phone or on the PC via p3nfs. Viewing the file on the phone
was slow using the built-in applications and needed swapping between the
program being debugged and the viewer. Using p3nfs was not working either
as it took some time before the PC recognized updates or they only came block-
wise. We do not know which is the case but we did not find it feasible to use
this method.

Instead of using a local file we investigated how to get the debugging infor-
mation shown on another device. Our first attempt was to use the serial port,
but found that it was not directly accessible. It was locked by an application
on the phone used for synchronization with other devices. Instead we used
the same approach but using the infrared port, printing debug information to
a Palm Pilot, which was the only other device we had with an infrared port.
This was however not optimal. First, the location of the infrared ports meant
that the devices had different reading angles, making it very difficult and te-
dious to watch both screens at the same time. Second, we needed to correlate
the time of some of the informations with the time on the PC to use for the
graphs.

Finally we found the (undocumented) RDebug-class (in e32svr.h) which
has a Print function used to print arbitrary data to the serial port. This makes
it possible to read the debugging informations on the PC, using it for timing,
recording the information, etc. This is the best debugging solution we have
found, and we have had no problems using it.

Conclusion

Programming for Symbian OS using Linux is possible using the standard GNU
tools. The only real problem is the lack of debugging. The SDK environment
for Windows has a Windows-based emulator that has the debugging facilities
that we seek. The problem with the emulator is that it emulates the Symbian
OS, not the phone hardware, and programs need to be compiled with either
Microsoft Visual C++ or MetroWerks CodeWarrior. Besides the lack of an em-
ulator everything works, and we have not encountered problems originating
from the fact that we are developing with Linux.



APPENDIX C

Additional Measurements

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

boottoidle_light

Avg: 298.8  Min: 7.2  Max: 1274.4

(a) Back-light on, normal mode, power-
save.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

boottoidle

Avg: 159.5  Min: 8.4  Max: 1237.2

(b) Back-light off, normal mode, power-
save.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

boottoidle_light_noauto

Avg: 274.4  Min: 28.8  Max: 1436.4

(c) Back-light on, normal mode.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

boottoidle_noauto

Avg: 196.8  Min: 28.8  Max: 1094.4

(d) Back-light off, normal mode.

Figure C.1: The energy usage when booting the phone until it goes idle, in
normal mode. It is measured with and without back-light, and with or without
2 minutes screen power-save.

105



106 Additional Measurements

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

boottoidle_light_flight

Avg: 279.7  Min: 8.4  Max: 988.8

(a) Back-light on, flight mode, power-
save.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

boottoidle_flight

Avg: 140.0  Min: 8.4  Max: 970.8

(b) Back-light off, flight mode, power-
save.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

boottoidle_light_flight_noauto

Avg: 229.1  Min: 28.8  Max: 985.2

(c) Back-light on, flight mode.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

boottoidle_flight_noauto

Avg: 147.6  Min: 28.8  Max: 968.4

(d) Back-light off, flight mode.

Figure C.2: The energy usage when booting the phone until it goes idle, in
flight mode. It is measured with and without back-light, and with or without
2 minutes screen power-save.



Appendix C 107

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

phoneusage_gui

Avg: 100.9  Min: 27.6  Max: 528.0

(a) Playing around with the GUI.

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

phoneusage_gui2

Avg: 138.9  Min: 26.4  Max: 528.0

(b) Touching the same place of the screen
in a GUI and a console mode program.

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

phoneusage_conv1

Avg: 124.3  Min: 31.2  Max: 1047.6

(c) A GSM connection, with no conversa-
tion

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

phoneusage_conv2

Avg: 131.4  Min: 28.8  Max: 1047.6

(d) A GSM connection, with conversation

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

phoneusage_camera

Avg: 222.7  Min: 27.6  Max: 726.0

(e) Turning on the camera, wait 20 secs.,
take a picture.

Figure C.3: The energy usage when using different phone functionalities.



108 Additional Measurements

 0

 200

 400

 600

 800

 1000

 0  20  40  60  80  100  120  140  160  180  200

m
W

seconds

phoneusage_game

Avg: 324.4  Min: 27.6  Max: 1074.0

(a) Playing a game

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  50  100  150  200  250

m
W

seconds

phoneusage_max

Avg: 782.8  Min: 139.2  Max: 1569.6

(b) GSM connection, Bluetooth connec-
tion, back-light on, and game at same time

Figure C.4: The energy usage when trying to stress the phone. Note the differ-
ences in scale.


	1 Introduction
	1.1 Challenges
	1.2 Context and Assumptions
	1.3 Problem Description and Approach
	1.4 Related Work
	1.5 Contribution
	1.6 Thesis Outline

	2 Making the Connection
	2.1 Automatic Device Discovery
	2.2 Handling Multiple Devices
	2.3 Final Design
	2.4 Relay Attack
	2.5 Conclusion

	3 Secure Access Control
	3.1 Basic Design
	3.2 Security Needs
	3.3 Protocol Design
	3.4 Cryptographic Algorithms
	3.5 Using Bluetooth
	3.6 Device Requirements
	3.7 Extending the Protocol
	3.8 Conclusion

	4 Implementing the Prototype
	4.1 The Mobile Phone
	4.2 Implementation
	4.3 Resource Cost
	4.4 Conclusion

	5 Evaluating the Design
	5.1 Test Setup
	5.2 The Mobile Device
	5.3 The Application
	5.4 Conclusion

	6 The Optimal Device
	6.1 Augmenting the Mobile Phone
	6.2 Building a Custom Device
	6.3 Conclusion

	7 Conclusion
	7.1 Future Work

	Bibliography  
	A Protocol Description
	B Developing for the Symbian OS using Linux
	C Additional Measurements

